Đến nội dung


Chú ý

Nếu các bạn đăng kí thành viên mà không nhận được email kích hoạt thì hãy kiểm tra thùng thư rác (spam). Nếu không biết cách truy cập vào thùng thư rác thì các bạn chịu khó Google hoặc đăng câu hỏi vào mục Hướng dẫn - Trợ giúp để thành viên khác có thể hỗ trợ.


metamodel

Đăng ký: 26-12-2004
Offline Đăng nhập: 03-08-2007 - 22:39
-----

Bài viết của tôi gửi

Trong chủ đề: đường thăng OI có gì đặc biệt

17-04-2005 - 15:42

Bài này tôi giải bằng vectơ.
Gọi G là trọng tâm tgDEF thì theo định lý về đường thẳng Ơle : I, H, G thẳng hàng. Do đó : O, I, H thẳng hang khi và chỉ khi O,I,G thẳng hàng.

Ta ký hiệu #AB là vectơ AB. Bây giờ ta tính #OI và #IG theo #AB và #AC.

Gọi A’,B’,C’ là chân các đường cao của tgABC. Dễ tính được #AA’=(bcosC#AB+ccosB#AC)/a.
Lại thấy : #ID = (r/AA’)#AA’=(a/2p)#AA’=(bcosC#AB+ccosB#AC)/2p.
Tương tự tính được #IE và #IF.

Vậy #IG=1/3(#ID + #IE + #IF) nên
#IG = [b(cosA+cosC-1)#AB + c(cosB+cosA-1)#AC]/6p

Gọi M là trung điểm BC thì có gócMOC=gócA hoặc MOC = pi-gócA. Trong cả 2 trường hợp ta luôn có #OM = (acotgA/2r)#ID.

Ta còn tính được #MD = [a/2 – (p-c)]/a .#BC = (b-c)/2a#AB+(c-b)/2a #AC.

Suy ra : #OI = #OM + #MD + #DI = (acotgA/2r - 1)#ID + #MD
= [(acotgA/2r – 1)bcosC/2p + (b-c)/2a]#AB + [(acotgA/2r – 1)ccosB/2p + (c-b)/2a]#AC

Đã biểu diễn : #IG = k#AB + l#AC và #OI = m#AB + n#AC
Vậy : O, I, G thẳng hàng < = > k.n=l.m
< = > [(acotgA/2r – 1)bcosC/2p + (b-c)/2a]. c(cosB+cosA-1) = [(acotgA/2r – 1)ccosB/2p + (c-b)/2a]. b(cosA+cosC-1)
< = > (acotgA/2r – 1)bc/2p.[cosC(cosB+cosA-1)-cosB(cosA+cosC-1)] = (c-b)/2a.[ b(cosA+cosC-1) + c(cosB+cosA-1) ]

Vế phải (VP) biến đổi (giữ (c-b) còn lại quy hết về hàm sin ) được :
VP = (c-b)/2 .(1-cosB-cosC)

Vế trái (VT) = (acotgA/2r – 1)bc/2p.(cosA-1)(cosC-cosB)
= (abc.cotgA/4pr – bc/2p).(cosA-1)(cosC-cosB)
Có : abc.cotgA/4pr = abc.cotgA/4S = RcotgA = RcosA/sinA.
Lại có : bc/2p = bc/(a+b+c) = 4Rsin(A/2)sin(B/2)sin(C/2) / sinA
= R(cosA+cosB+cosC-1) / sin A

Với chú ý là sinA+sinB+sinC = 4cos(A/2)cos(B/2)cos(C/2) và cosA+cosB+cosC=1+4sin(A/2)sin(B/2)sin(C/2)

Vậy : abc.cotgA/4pr – bc/2p = R(1-cosB-cosC) /sinA
Suy ra : VT = R(1-cosB-cosC) /sinA . (1-cosA)(cosB-cosC) = (1-cosB-cosC).(c-b)/2 =VP

Vậy ta có ĐPCM.
Bạn nào giải được bằng hình học thuần túy thì post lên nhé.

Trong chủ đề: làm giúp với

15-04-2005 - 17:27

Bài này hay thật, cách giải của tôi hơi có phần mò mẫm, bạn tự tìm hiểu tại sao nhé.

Gọi H,I,K là chân các đường pgiác A, trung tuyến B, đường cao C.
Theo định lý Xêva ta có : AK/KB * BH/HC = 1 suy ra KB/AK = BH/HC = c/b.
Suy ra ngay : AK = bc/(b+c) do AK+KB=c.

Vậy cosA=CK/CA=c/(b+c). Mà cosA=(b^2+c^2-a^2)/2bc

Suy ra :c/(b+c)=(b^2+c^2-a^2)/2bc => 2bc^2= (b+c).(b^2+c^2-a^2). (1)
Vì góc C nhọn nên cosC>0 nên c^2<a^2+b^2 => c^2-a^2<b^2 => b^2 + c^2-a^2<2b^2
=> (b+c)(b^2 + c^2-a^2)<2b^2(b+c) (2)
Từ (1),(2) suy ra : 2bc^2<2b^2(b+c) hay c^2<b^2+bc. (3)

Lại có (cosA)^2+cosA = c^2/(b+c)^2 +c/(b+c) = (2c^2+bc)/(b^2+2bc+c^2)

Từ (3) ta có : (2c^2+bc) < (b^2+2bc+c^2) suy ra (cosA)^2+cosA < 1 hay (cosA)^2 + cosA - 1<0

Giải bất pt tam thức bậc 2 ở trên ta có ngay cosA < (căn(5)-1)/2 .

Trong chủ đề: định lượnng

15-04-2005 - 14:14

Bài này bạn cứ dùng tam giác đồng dạng là ra mà. Đặt AB = d và AM = x.

Từ các tam giác đồng dạng, bạn có AO1/AB = x/(x+4) nên AO1 = dx/(x+4).
Tương tự, AO2 = dx/(x+9).

Lại xét các tam giác đồng dạng ta có : O1F1/MN1 = 4/(4+x) nên O1F1 = 4dx/(x+4)^2
Tương tự : O2F2 = 9dx/(x+9)^2

Bây giờ giải pt : O1F1 = O2F2 là ra x.

Trong chủ đề: Bài toán hình học ĐẶC BIỆT

14-04-2005 - 23:10

Bạn sẽ giải được bài toán trên nếu giải được bài sau : Cho tam giác ACD đều có G là tâm. M là trung điểm AC. Lầy điểm H đối xứng với G qua AC. CMR tập hợp những điểm B thỏa mãn BD=2BM là đường tròn tâm H bán kính HC.

Có lẽ đối với bài này thì không cách nào ngắn hơn cách tọa độ. Không giảm TQ giả sử AC=2 ....