Đến nội dung

HieuND

HieuND

Đăng ký: 20-01-2018
Offline Đăng nhập: 24-05-2019 - 11:40
-----

#701615 $4(2\sqrt{10-2x}-\sqrt[3]{9x-37})=4x^...

Gửi bởi HieuND trong 13-02-2018 - 17:48

DKXD: $x\leqslant 5$

 

Ta có

$4(2\sqrt{10-2x}-\sqrt[3]{9x-37})=4x^{2}-15x-33$

 

$\Leftrightarrow 4x^{2}-8x-60+(4\sqrt[3]{9x-7}-(3x-7))+4((5-x)-2\sqrt{10-2x})=0$

 

$\Leftrightarrow 4(x-5)(x+3)+\frac{64(9x-37)-(3x-37)^{3}}{16\sqrt[3]{(9x-7)^2}-4(3x-37)\sqrt[3]{9x-7}+(3x-37)^{2}}+\frac{4((5-x)^{2}-4(10-2x))}{(5-x)+2\sqrt{10-2x}}=0$

 

$\Leftrightarrow 4(x-5)(x+3)+\frac{27(5-x)(x+3)(x-5)}{16\sqrt[3]{(9x-7)^2}-4(3x-37)\sqrt[3]{9x-7}+(3x-37)^{2}}+\frac{4(x-5)(x+3)}{(5-x)+2\sqrt{10-2x}}=0$

 

$\Leftrightarrow (x-5)(x+3)(\frac{27(5-x)}{16\sqrt[3]{(9x-7)^2}-4(3x-37)\sqrt[3]{9x-7}+(3x-37)^{2}}+\frac{4}{(5-x)+2\sqrt{10-2x}}+4)=0(*)$

 

Ta có:

$5-x\geqslant 0;16\sqrt[3]{(9x-7)^2}-4(3x-37)\sqrt[3]{9x-7}+(3x-37)^{2}>0;\sqrt{10-2x}\geqslant0$

 

$\Rightarrow \frac{27(5-x)}{16\sqrt[3]{(9x-7)^2}-4(3x-37)\sqrt[3]{9x-7}+(3x-37)^{2}}+\frac{4}{(5-x)+2\sqrt{10-2x}}+4 >0$

 

Kết hợp với (*) $\Leftrightarrow \begin{bmatrix} x=-3 \\ x=5 \end{bmatrix}$

 

 

 

 

   




#701235 $x^2+3=(2x+1).\sqrt{x+3}$

Gửi bởi HieuND trong 05-02-2018 - 18:49

$x^2+3=(2x+1).\sqrt{x+3}$

 

ĐKXD: $x\geq-3$

 

Ta có

 

$x^2+3=(2x+1).\sqrt{x+3}$

$\Leftrightarrow (\sqrt{x+3}-3)(x-1+x\sqrt{x+3})=0$

 

TH1: $\sqrt{x+3}-3=0 \\ \Leftrightarrow x+3= 9 \\ \Leftrightarrow x=6$

 

TH2: $x-1+x\sqrt{x+3} =0 \\ \Leftrightarrow x\sqrt{x+3}=1-x \\ \Leftrightarrow x^{2}(x+3)=(x-1)^{2} \\ \Leftrightarrow x^{3} +2x^2+2x-1=0$




#701147 $\frac{x^2}{(x+1)^2}+\frac{y^2}...

Gửi bởi HieuND trong 04-02-2018 - 07:19

Câu 1: cho x,y,z khác 1 sao cho xyz=1. Chứng minh :$\frac{x^2}{(x+1)^2}+\frac{y^2}{(y+1)^2}+\frac{z^2}{(z+1)^2}\geq 1$

Câu 2:  cho a,b,c>0. Chứng minh $\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{b+a}<\frac{a^2}{b^2+c^2}+\frac{b^2}{a^2+c^2}+\frac{c^2}{b^2+a^2}$

Câu 3: Cho $a,b,c \epsilon \left [ 0;1 \right ]$ Chứng minh :

$\frac{a}{b+c+1}+\frac{b}{a+c+1}+\frac{c}{b+a+1}+(1-a)(1-b)(1-c)\leq 1$

 

Bạn xem lại bài 1 đi a. Mình thứ với $x = y = \frac{1}{2}$ và $z = 4$ thì ra kết quả là $\frac{194}{225}<1$