Đến nội dung


Chú ý

Nếu các bạn đăng kí thành viên mà không nhận được email kích hoạt thì hãy kiểm tra thùng thư rác (spam). Nếu không biết cách truy cập vào thùng thư rác thì các bạn chịu khó Google hoặc đăng câu hỏi vào mục Hướng dẫn - Trợ giúp để thành viên khác có thể hỗ trợ.


VuTroc

Đăng ký: 08-03-2018
Offline Đăng nhập: 05-06-2018 - 06:50
-----

Bài viết của tôi gửi

Trong chủ đề: Giúp BĐT nhé

28-05-2018 - 21:54

Đề liên quan lắm bạn !

Bài ni đánh giá đại diện 


Trong chủ đề: Đề thi học sinh giỏi tỉnh Hà Tĩnh 2017-2018

20-03-2018 - 11:44

Đề thi HSG tỉnh Hà Tĩnh 2017-2018

 


Trong chủ đề: $a;b;\frac{1}{a}+\frac{1}...

08-03-2018 - 17:23

Cách giải này dễ hiểu hơn :
 
Dự đoán dấu '=' khi $m=a=b=\frac{1}{a}+\frac{1}{b}$. $\Rightarrow m=\sqrt{2}$
 
Xét $m>\sqrt{2}.\Rightarrow$ 
 
$a>\sqrt{2},b>\sqrt{2},\frac{1}{a}+\frac{1}{b}>\sqrt{2}$
$\Rightarrow \frac{1}{a}+\frac{1}{b}<\sqrt{2}$ và $\frac{1}{a}+\frac{1}{b}>\sqrt{2} $
$\Rightarrow$ Vô lý .
Vậy $m\leq \sqrt{2}$.

Trong chủ đề: $a;b;\frac{1}{a}+\frac{1}...

08-03-2018 - 17:15

Cách giải này dễ hiểu hơn :
 
Dự đoán dấu '=' khi $m=a=b=\frac{1}{a}+\frac{1}{b}$. $\Rightarrow m=\sqrt{2}$
 
Xét $m>\sqrt{2}.\Rightarrow$ 
 
$a>\sqrt{2},b>\sqrt{2},\frac{1}{a}+\frac{1}{b}>\sqrt{2}$
$\Rightarrow \frac{1}{a}+\frac{1}{b}<\sqrt{2}$ và $\frac{1}{a}+\frac{1}{b}>\sqrt{2} $
$\Rightarrow$ Vô lý .
Vậy $m\leq \sqrt{2}$.
??Cho mình hỏi tí muốn xóa câu trả lời phải làm sao hè?