Đến nội dung


Chú ý

Nếu các bạn đăng kí thành viên mà không nhận được email kích hoạt thì hãy kiểm tra thùng thư rác (spam). Nếu không biết cách truy cập vào thùng thư rác thì các bạn chịu khó Google hoặc đăng câu hỏi vào mục Hướng dẫn - Trợ giúp để thành viên khác có thể hỗ trợ.


HocHay

Đăng ký: 03-09-2018
Offline Đăng nhập: 23-09-2018 - 22:04
-----

Bài viết của tôi gửi

Trong chủ đề: Hơn 40 tam giác đều họ tam giác đều mới được phát hiện

23-09-2018 - 22:08

 

Let $ABC$ be a triangle, let $A'B'C'$ be the Morley triangles (First Morely triangle, Second Morley triangle, or third Morley trianhle). Let $B_a$, $C_a$ on $BC$ such that  $ A'B_aC_a$ be an equilateral triangle define $C_b$, $A_b$, $A_c$, $B_c$ cyclically. Let $A''$, $B''$, $C''$ be the midpoints of $A_bA_c$, $B_cB_a$, $C_aC_b$ respectively. Then triangle $A''B''C''$ is equilateral triangle and perspective to $ABC$. $A''B''C''$ homothetic to the Morley triangle. 
 
Cho tam giác $ABC$ và $A'B'C'$ là tam giác Morley (tam giác Morley thứ nhất, thứ hai, hoặc thứ ba). Cho các điểm $B_a$, $C_a$ trên $BC$ sao cho $A'B_aC_a$ là tam giác đều. Định nghĩa $C_b$, $A_b$, $A_c$, $B_c$ tương tự. Gọi $A''$, $B''$, $C''$ gọi là trung điểm của $A_bA_c$, $B_cB_a$, $C_aC_b$ khi đó $A''B"C''$ là vị tự của tam giác Morley và thấu xạ với tam giác $ABC$.
 

Sao mà khó nhìn thế bạn ơi hic


Trong chủ đề: Một kết quả kì lạ?

05-09-2018 - 16:56

khó hiểu quá huhu


Trong chủ đề: CM hình học

03-09-2018 - 23:26

Hóng bạn nào vào giải với ạ huhu