Đến nội dung


Chú ý

Nếu các bạn đăng kí thành viên mà không nhận được email kích hoạt thì hãy kiểm tra thùng thư rác (spam). Nếu không biết cách truy cập vào thùng thư rác thì các bạn chịu khó Google hoặc đăng câu hỏi vào mục Hướng dẫn - Trợ giúp để thành viên khác có thể hỗ trợ.


MyWorldMaths

Đăng ký: 09-12-2018
Offline Đăng nhập: Hôm nay, 20:56
-----

#719292 đề thi hsg toán thành phố Hà Nội 2018-2019

Gửi bởi MyWorldMaths trong 10-01-2019 - 11:31

Kì thi chọn HSG toán thành phố lớp 9

Thời gian :150 phút

Bài 1:(5 điểm)

1. Giải PT :$\sqrt[3]{2-x}=1-\sqrt{x-1}$

 

2. Cho $S=(1-\frac{2}{2.3})(1-\frac{2}{3.4})...(1-\frac{2}{2020.2021})$ là tích của 2019 thừa số. Tính S (lấy kết quả là phân số tối giản)

 

Bài 2:(5 điểm)

1. Biết a,b là các số nguyên dương thỏa mãn $a^{2}-ab+b^{2}\vdots 9$. CMR cả a và b đều chia hết cho 3.

 

2. Tìm các số nguyên dương n sao cho $9^{n}+11$ là tích của k (k thuộc N, k >=2) số tự nhiên liên tiếp.

 

Bài 3:(3 điểm)

1. Cho x,y,z là các số thực dương nhỏ hơn 4. CMR  trong các số $\frac{1}{x}+\frac{1}{4-y};\frac{1}{y}+\frac{1}{4-z};\frac{1}{z}+\frac{1}{4-x}$ tồn tại ít nhất 1 số lớn hơn hoặc bằng 1.

 

2. Với a,b,c dương thỏa mãn $a^{2}+b^{2}+c^{2}+2abc=1.$. Tìm MAX $P=ab+bc+ca-abc$

 

Bài 4:(6 điểm)

        Cho tam giác ABC vuông tại A  (AB<AC). Đường tròn (I) nội tiếp tam giác ABC, tiếp xúc BC,CA,AB lần lượt tại D,E,F. Gọi S là giao điểm của AI và DE.

          1. CMR tam giác IAB đồng dạng tam giác EAS.

          2. Gọi K là trung điểm của AB. O là trung điểm của BC. CMR K,O,S thẳng hàng

          3. Gọi M là giao điểm của KI và AC. Đường thẳng chứa đường cao AH của tam giác ABC cắt DE tại N. CMR AM=AN

 

Bài 5:(1 điểm)

       Xét bảng ô vuông cỡ 10x10 gồm 100 hình vuông có cạnh 1 đơn vị. Người ta điền vào mỗi ô vuông của bảng 1 số nguyên tùy ý sao cho hiệu hai số được điền ở hai ô chung cạnh bất kỳ đều có GTTĐ ko vượt quá 1. CMR tồn tại một số nguyên xuất hiện trong bảng ít nhất 6 lần. 

 




#719138 bài toán dở dang

Gửi bởi MyWorldMaths trong 06-01-2019 - 14:24

Mình có bài BĐT này

 Cho  $x,y,z>0$ và xyz=1. $\sum \frac{x^{4}y}{x^{2}+1}\geq \frac{3}{2}$

                                         Giải

Mình giải thế này:

Đặt $x=\frac{1}{a},y=\frac{1}{b},z=\frac{1}{c}$. Suy ra abc=1

Ta có $\frac{x^{4}y}{x^{2}+1}=\frac{a^{2}}{a^{4}b(a^{2}+1)}$=$\frac{1}{a^{2}b(a^{2}+1)}=\frac{a^{2}b^{2}c^{^{2}}}{a^{^{2}}b(a^{2}+1)}=\frac{bc^{2}}{a^{2}+1}=\frac{bc^{2}(a^{2}+1)-bc^{2}a^{2}}{a^{2}+1}=bc^{2}-\frac{ac}{a^{2}+1}\geq bc^{2}-\frac{ac}{a^{2}+1}=bc^{2}-\frac{c}{2}$

Chứng minh tương tự rồi cộng theo vế, có: $VT\geq ab^{2}+bc^{^{2}}+ca^{2}-(\frac{a}{2}+\frac{b}{2}+\frac{c}{2})$ (1)

Áp dụng AM_GM $ab^{2}+\frac{1}{a}\geq 2b$. suy ra $ab^{2}+bc^{2}+ca^{2}\geq 2(a+b+c)-(\frac{1}{a}+\frac{1}{b}+\frac{1}{c})$ 

suy ra $ab^{2}+bc^{2}+ca^{2}-\frac{a+b+c}{2}\geq \frac{3}{2}(a+b+c)-(\frac{1}{a}+\frac{1}{b}+\frac{1}{c})$ (2)

 

Từ (1) và (2) có $VT\geq$  \frac{3}{2}(a+b+c)-(\frac{1}{a}+\frac{1}{b}+\frac{1}{c})$ 

đến đây mình ko làm đc nữa. bạn nào giải giùm mình với. các bạn giải cách khác cũng đc. Cám ơn nhiều.  :D  :D  :D




#718719 bất đẳng thức

Gửi bởi MyWorldMaths trong 26-12-2018 - 22:50

câu 3 bạn còn cần không để hôm nào mình gửi luôn cho 

Được. cám ơn bạn. 

Mình có mới đăng một số bài. bạn vào nghiên cứu thử nhé!!




#718718 bất đẳng thức

Gửi bởi MyWorldMaths trong 26-12-2018 - 22:49

Với $\it{x},\,\it{y},\,\it{z}\geqq \it{0}$ thì: $\it{0}< \frac{\it{1}+ \it{x}}{\it{1}+ \it{x}+ \it{x}},\,\frac{\it{1}+ \it{y}}{\it{1}+ \it{y}+ \it{y}},\,\frac{\it{1}+ \it{z}}{\it{1}+ \it{z}+ \it{z}}\leqq 1$

Xét trường hợp ít nhất một trong ba biến bằng $0$ , không mất tính tổng quát trong chứng minh, chẳng hạn $\it{a}$ , khi đó:

 

$$\it{1}- \sum\limits_{cyc}\,\frac{\it{a}}{\it{b}+ \it{c}+ \it{1}}- \left ( \it{1}- \it{a} \right )\left ( \it{1}- \it{b} \right )\left ( \it{1}- \it{c} \right )= \frac{\it{bc}\left ( \it{1}- \it{bc} \right )}{\left ( \it{b}+ \it{1} \right )\left ( \it{c}+ \it{1} \right )}\geqq \it{0}$$

 

Giờ đây, ta chỉ cần đặt: $\it{a}= \frac{\it{1}+ \it{x}}{\it{1}+ \it{x}+ \it{x}},\,\it{b}= \frac{\it{1}+ \it{y}}{\it{1}+ \it{y}+ \it{y}},\,\it{c}= \frac{\it{1}+ \it{z}}{\it{1}+ \it{z}+ \it{z}}$ , sẽ có được biểu thức vế trái với hệ số của $\it{x},\,\it{y},\,\it{z}$ đều không âm!

Bạn có thể trả lời cụ thể hơn ko. Mình ko hiểu! cám ơn




#718564 bất đẳng thức

Gửi bởi MyWorldMaths trong 20-12-2018 - 22:56

$\lceil\,\,3\,\,\rfloor$ Viết lại bất đẳng thức dưới dạng thuần nhất :

$\frac{\mathit{4}\,\mathit{abc}}{\left ( \mathit{a}+ \mathit{b} \right )^{\,\mathit{3}}}+ \frac{\mathit{4}\,\mathit{abc}}{\left ( \mathit{b}+ \mathit{c} \right )^{\,\mathit{3}}}+ \frac{\mathit{4}\,\mathit{abc}}{\left ( \mathit{c}+ \mathit{a} \right )^{\,\mathit{3}}}\geqq \frac{\mathit{a}}{\mathit{b}+ \mathit{c}}+ \frac{\mathit{b}}{\mathit{c}+ \mathit{a}}+ \frac{\mathit{c}}{\mathit{a}+ \mathit{b}}$

Nếu viết lại bất đẳng thức trên theo kiểu $\mathit{3}\,\mathit{u}= \mathit{a}+ \mathit{b}+ \mathit{c},\,\mathit{3}\,\mathit{v}^{\,\mathit{2}}= \mathit{ab}+ \mathit{bc}+ \mathit{ca},\,\mathit{w}^{\,\mathit{3}}= abc$ , hiển nhiên trong chứng minh uvw thì thường dùng nhiều $\mathit{u}> \mathit{v}> \mathit{w}$ , do đó hệ số của $\mathit{abc}$ luôn âm , bài toán này bị ngược dấu !

Spoiler

Do bất đẳng thức thuần nhất nên không mất tính tổng quát , giả sử $\mathit{b}= \mathit{c}= 1$ . Khi đó :

$- \left ( \frac{\mathit{4}\,\mathit{abc}}{\left ( \mathit{a}+ \mathit{b} \right )^{\,\mathit{3}}}+ \frac{\mathit{4}\,\mathit{abc}}{\left ( \mathit{b}+ \mathit{c} \right )^{\,\mathit{3}}}+ \frac{\mathit{4}\,\mathit{abc}}{\left ( \mathit{c}+ \mathit{a} \right )^{\,\mathit{3}}} \right )+ \frac{\mathit{a}}{\mathit{b}+ \mathit{c}}+ \frac{\mathit{b}}{\mathit{c}+ \mathit{a}}+ \frac{\mathit{c}}{\mathit{a}+ \mathit{b}}= \frac{\mathit{2}\left ( \mathit{a}- \mathit{1} \right )^{\,\mathit{2}}}{\left ( \mathit{a}+ \mathit{1} \right )^{\,\mathit{3}}}\geqq \mathit{0}$

Spoiler

i'm so sorry đề bài là a+b+c=3




#718563 bất đẳng thức

Gửi bởi MyWorldMaths trong 20-12-2018 - 22:53

$\lceil\,\,1\,\,\rfloor$

Sử dụng phép thế Ravi , vì vậy đặt : $\left\{\begin{matrix} a & = & \frac{{x}_{\,1}+ {x}_{\,2}+ {x}_{\,3}- {x}_{\,4}}{2}\\ \\ b & = & \frac{{x}_{\,2}+ {x}_{\,3}+ {x}_{\,4}- {x}_{\,1}}{2}\\ \\ c & = & \frac{{x}_{\,3}+ {x}_{\,4}+ {x}_{\,1}- {x}_{\,2}}{2}\\ \\ d & = & \frac{{x}_{\,4}+ {x}_{\,1}+ {x}_{\,2}- {x}_{\,3}}{2} \end{matrix}\right.$ với $x_{\,1,\,2,\,3,\,4}> 0$ . Ta có:

 

$\text{P}= \frac{x_{\,1}+ x_{\,2}+ x_{\,3}- x_{\,4}}{4\,x_{\,4}}+ \frac{x_{\,2}+ x_{\,3}+ x_{\,4}- x_{\,1}}{4\,x_{\,1}}+ \frac{x_{\,3}+ x_{\,4}+ x_{\,1}- x_{\,2}}{4\,x_{\,2}}+ \frac{x_{\,4}+ x_{\,1}+ x_{\,2}- x_{\,3}}{4\,x_{\,3}}= $ $= \frac{x_{\,1}}{4\,x_{\,4}}+ \frac{x_{\,2}}{4\,x_{\,4}}+ \frac{x_{\,3}}{4\,x_{\,4}}- \frac{1}{4}+ \,...\,+ \frac{x_{\,4}}{4\,x_{\,3}}+ \frac{x_{\,1}}{4\,x_{\,3}}+ \frac{x_{\,2}}{4\,x_{\,3}}- \frac{1}{4}\geqq 2$

Mình mới thấy phép thế ravi trong tam giác vậy trong tứ giác thì làm cách nào bạn có thể suy luận ra cách đặt như thế




#718378 bất đẳng thức

Gửi bởi MyWorldMaths trong 14-12-2018 - 09:45

khó đây, nghĩ hòa không ra

bài 1:

Cho a,b,c,d là 4 cạnh của một tứ giác lồi Tìm MIN $P=\frac{a}{b+c+d-a}+\frac{b}{c+d+a-c}+\frac{c}{a+b+d-c}+\frac{d}{a+b+c-d}$

Bài 2:

cho a,b,c>0 CMR $\sqrt{\frac{a}{b+c+2a}}+\sqrt{\frac{b}{c+a+2b}}+\frac{c}{a+b+2c}\leq \frac{3}{4}$

bài 3: Cho a,b,c>0 và a=b=c=1. CMR $\frac{4}{(a+b)^{3}}+\frac{4}{(b+c)^{3}}+\frac{4}{(c+a)^{3}}\geq \frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}$

Bài 4: cho a,b,c>0 CMR $\sqrt{(a^{2}b+b^{2}c+c^{2}a)(ab^{2}+bc^{2}+ca^{2})}\geq abc+\sqrt{(a^{3}+abc)(b^{3}+abc)(c^{3}+abc)}$

 

MOng được nhận giúp đỡ!!!