Đến nội dung


Chú ý

Do trục trặc kĩ thuật nên diễn đàn đã không truy cập được trong ít ngày vừa qua, mong các bạn thông cảm.

Nếu các bạn đăng kí thành viên mà không nhận được email kích hoạt thì hãy kiểm tra thùng thư rác (spam). Nếu không biết cách truy cập vào thùng thư rác thì các bạn chịu khó Google hoặc đăng câu hỏi vào mục Hướng dẫn - Trợ giúp để thành viên khác có thể hỗ trợ.


toanND

Đăng ký: 15-12-2018
Offline Đăng nhập: 17-06-2019 - 22:47
-----

Bài viết của tôi gửi

Trong chủ đề: bất đẳng thức

17-06-2019 - 12:51

Áp dụng BĐT $b^2+bc+c^2\geq\frac{3}{4}(b+c)^2$

Ta có $15\geq3a^2+4(b^2+bc+c^2)\geq3[a^2+(b+c)^2]\geq\frac{3}{2}(a+b+c)^2$

$\Rightarrow (a+b+c)^2\leq10\Rightarrow-\sqrt{10}\leq a+b+c\leq \sqrt{10}$

Từ đó ta có min , max

e tự tìm dấu = nhé


Trong chủ đề: bất đẳng thức

16-06-2019 - 22:23

BÀI 3. Áp dụng BĐT Bunhiacopxki ta có $(a^2+b)(1+\frac{1}{b})\geq(a+1)^2$

Tương tự với các BĐT còn lại rồi nhân lại ta có $(a^2+b)(b^2+c)(c^2+a)\frac{(a+1)(b+1)(c+1)}{abc}\geq(a+1)^2(b+1)^2(c+1)^2$

$\Leftrightarrow (a^2+b)(b^2+c)(c^2+a)\geq abc(a+1)(b+1)(c+1)$

Dấu = xảy ra khi a =b =c 


Trong chủ đề: bất đẳng thức

14-06-2019 - 16:37

Ngưỡng mộ anh toanND quá, anh chỉ cho em cách học giỏi bđt với ạ

Kiếm sách với tài liệu mà đọc thôi e :ukliam2:


Trong chủ đề: bất đẳng thức

14-06-2019 - 13:22

Em cảm ơn anh toannd, bài 1 câu a anh có thể giải bằng cauchy dc k ah

Có thể dùng AM - GM (Cauchy) kiểu này : $\frac{1}{a}+\frac{1}{b}\geq\frac{4}{a+b}; \frac{1}{ab}\geq\frac{4}{(a+b)^2}$

Áp dụng hai BĐT trên, ta biến đổi biểu thức P như sau:

$P=(1+\frac{1}{a}+\frac{1}{b}+\frac{1}{ab})(1+\frac{1}{c}+\frac{1}{d}+\frac{1}{cd})\geq[1+\frac{4}{a+b}+\frac{4}{(a+b)^2}][1+\frac{4}{c+d}+\frac{4}{(c+d)^2}]=[(\frac{2}{a+b}+1)(\frac{2}{c+d}+1)] ^2 ]$

Đặt $A=[(\frac{2}{a+b}+1)(\frac{2}{c+d}+1)]^2$

$\Rightarrow A=[\frac{4}{(a+b)(c+d)}+\frac{2}{a+b}+\frac{2}{c+d}+1]^2\geq[\frac{16}{(a+b+c+d)^2}+\frac{8}{a+b+c+d}+1]^2=625$

$\Rightarrow P\geq A\geq625$  ~O)


Trong chủ đề: bất đẳng thức

14-06-2019 - 08:50

BÀI 1

a. Áp dụng BĐT Holder ta có: $P=(\frac{1}{a}+1)(\frac{1}{b}+1)(\frac{1}{c}+1)(\frac{1}{d}+1)\geq (\sqrt[4]{\frac{1}{abcd}}+1)^{4}$

Mặt khác theo BĐT AM-GM: $\sqrt[4]{abcd}\leq \frac{a+b+c+d}{4}=\frac{1}{4}$

$\Rightarrow P\geq(4+1)^{4}=625$

Vậy $minP=625$ khi $a=b=c=d= \frac{1}{4}$

b. Ta có $Q=\frac{a(b+c+d)}{\frac{a^{2}}{3}+b^{2}+\frac{a^{2}}{3}+c^{2}+\frac{a^{2}}{3}+d^{2}}\leq\frac{a(b+c+d)}{\frac{2}{\sqrt{3}}(ab+ac+ad)}=\frac{\sqrt{3}}{2}$

Vậy $maxQ = \frac{\sqrt{3}}{2}$ khi ..........

BÀI 2. Ý tưởng cũng giống bài 1b thôi e  :closedeyes: