Đến nội dung


Chú ý

Nếu các bạn đăng kí thành viên mà không nhận được email kích hoạt thì hãy kiểm tra thùng thư rác (spam). Nếu không biết cách truy cập vào thùng thư rác thì các bạn chịu khó Google hoặc đăng câu hỏi vào mục Hướng dẫn - Trợ giúp để thành viên khác có thể hỗ trợ.


toanND

Đăng ký: 15-12-2018
Offline Đăng nhập: 12-02-2020 - 22:05
-----

Bài viết của tôi gửi

Trong chủ đề: CMR $ TM // BC $

08-08-2019 - 09:38

Bài này có thể giải bằng định lý Pascal


Trong chủ đề: $\widehat{NLP}=90^0$

05-08-2019 - 21:44

File gửi kèm  capture NVL.PNG   24.4K   7 Số lần tải

Gọi AQ là đường đối trung ứng với đỉnh A của tam giác ABC. AQ cắt (O) lần thứ hai tại T

$\Rightarrow$ Tứ giác ABTC điều hòa $\Rightarrow$ SA tiếp xúc với (O) tại A (S là giao của OL với BC).

Gọi $H_{a}$ là chân đường cao kẻ từ A của tam giác ABC. K là giao của OL với $AH_{a}$.

$\Rightarrow$ K là trực tâm tam giác AQS $\Rightarrow QK \perp AS$

Gọi M, I lần lượt là trung điểm của BC, $H_{b}H_{c}$. Khi đó M, I, N thẳng hàng và $MN\perp H_{b}H_{c}$

Mặt khác dễ thấy $AS \parallel H_bH_c$ $\Rightarrow QK \parallel MN$

$KLQH_a$ nội tiếp $\Rightarrow \widehat{H_aLQ}=\widehat{H_aKQ}=\widehat{H_aNI}(KQ\parallel MN)$

$\Rightarrow NILH_a$ nội tiếp. Mặt khác $I,H_a$ cùng nằm trên đường tròn đường kính NP

Suy ra L nằm trên đường tròn đường kính NP$\Rightarrow \widehat{NLP}=90^0$ (đpcm)  :like


Trong chủ đề: $1+\sqrt{\frac{2+1}{2}}+...

01-08-2019 - 21:05

 chỗ $\left ( 1+\frac{1}{n^{2}} \right )^{n}> 1+n.\frac{1}{n^{2}}$ này là sao bạn

Bất đẳng thức Bernoulli đó


Trong chủ đề: Bất đẳng thức

13-07-2019 - 09:53

  • Trước hết, ta chứng minh bđt phụ sau:

Cho các số thực dương a,b,c. Chứng minh rằng $\frac{a}{c}+\frac{c}{b}+\frac{b}{a}\geq\frac{\sqrt{3(a^2+b^2+c^2)}}{\sqrt[3]{abc}}$ (1)

Thật vậy $(1)\Leftrightarrow \frac{a^2}{c^2}+\frac{c^2}{b^2}+\frac{b^2}{a^2}+2(\frac{a}{b}+\frac{c}{a}+\frac{b}{c})\geq\frac{3(a^2+b^2+c^2)}{\sqrt[3]{(abc)^2}}$

Áp dụng BĐT AM-GM ta có $\frac{a^2}{c^2}+\frac{a}{b}+\frac{a}{b}\geq3\sqrt[3]{\frac{a^4}{b^2c^2}}=\frac{3a^2}{\sqrt[3]{(abc)^2}}$

Tương tự với các bđt còn lại, sau đó cộng lại ta có đpcm.

  • Trở lại bài toán, áp dụng bđt phụ trên thì ta cần chứng minh $\frac{\sqrt{3(a^2+b^2+c^2)}}{\sqrt[3]{abc}}+\sqrt[3]{abc}\geq\frac{10}{9(a^2+b^2+c^2)}$

Áp dụng bđt AM-GM ta có

$\frac{\sqrt{3(a^2+b^2+c^2)}}{\sqrt[3]{abc}}+\sqrt[3]{abc}=\frac{\sqrt{3(a^2+b^2+c^2)}}{\sqrt[3]{abc}}+9\sqrt[3]{abc}-8\sqrt[3]{abc}\geq2\sqrt{9\sqrt{3(a^2+b^2+c^2)}}-\frac{8}{3}(a+b+c)=6\sqrt[4]{3(a^2+b^2+c^2)}-\frac{8}{3}$

Đặt $t=\sqrt[4]{3(a^2+b^2+c^2)}\geq\sqrt[4]{(a+b+c)^2}=1$

Ta chỉ cần chứng minh $6t-\frac{8}{3}\geq\frac{10}{3t^4}\Leftrightarrow t^4(9t-4)\geq5$ (đúng do $t\geq1$ )

Vậy ta có đpcm. ~O)

 


Trong chủ đề: Một số bài toàn bất đẳng thức mình cần được giúp đỡ!

12-07-2019 - 16:52

$\boxed{16}$

Áp dụng BĐT Cauchy Schwarz ta có

$\frac{a}{4b^2+1}+\frac{b}{4c^2+1}+\frac{c}{4a^2+1}=\frac{a^3}{4a^2b^2+a^2}+\frac{b^3}{4b^2c^2+c^2}+\frac{c^3}{4c^2a^2+c^2}\geq \frac{(a\sqrt{a}+b\sqrt{b}+c\sqrt{c})^2}{4(a^2b^2+b^2c^2+c^2a^2)+a^2+b^2+c^2}$

Ta chỉ cần chứng minh 

$4(a^2b^2+b^2c^2+c^2a^2)+a^2+b^2+c^2\leq 1 =(a+b+c)^2$

$\Leftrightarrow ab(1-2ab)+bc(1-2bc)+ca(1-2ca)\geq0$

Lại có $ab>0$ , $ab\leq\frac{(a+b)^2}{4}<\frac{(a+b+c)^2}{4}$ $\Rightarrow ab<\frac{1}{4}\Rightarrow ab(1-2ab)>0$

Tương tự ta có đpcm

Dấu = không xảy ra