Cho hình vuông ABCD nội tiếp (O). Điểm P bất kì nằm trên cung nhỏ CD. PB $\cap$ CD = K, PB $\cap$ CA=M
PA $\cap$ DC =L, PA $\cap$ DB =N. MN cắt cạnh AD,BC tại F,E. FK $\cap$ EL=Q. Chứng minh PQ $\perp$ CD
Nếu bạn gặp lỗi trong quá trinh đăng ký thành viên, hoặc đã đăng ký thành công nhưng không nhận được email kích hoạt, hãy thực hiện những bước sau:
Thông tin liên hệ: https://www.facebook...witched_toast=0
____________________________________________________________
20-04-2021 - 14:54
Cho hình vuông ABCD nội tiếp (O). Điểm P bất kì nằm trên cung nhỏ CD. PB $\cap$ CD = K, PB $\cap$ CA=M
PA $\cap$ DC =L, PA $\cap$ DB =N. MN cắt cạnh AD,BC tại F,E. FK $\cap$ EL=Q. Chứng minh PQ $\perp$ CD
10-04-2021 - 08:34
Cho tam giác ABC nội tiếp (O), ngoại tiếp (I). Trên (IBC) lấy P bất kì, PB,PC cắt (O) tại E,F, D là hình chiếu của P lên BC .Gọi M là trung điểm EF. Qua M kẻ đường thẳng song song với PC,PB cắt trung trực của PD lần lượt tại Q,R. Trung trực của QR căt PM tại N. Chứng minh (NQR) tiếp xúc với (O).
09-04-2021 - 22:23
Cho tam giác ABC nội tiếp (O) và ngoại tiếp (I). (I) tiếp xúc với BC tại D. Đường tròn ngoại tiếp tam giác ABD cắt AC tại E, đường tròn ngoại tiếp tam giác ACD cắt AB tại F. Gọi M,N lần lượt là trung điểm của DE,DF. Chứng minh OI$\perp$AD khi và chỉ khi AD,BN,CM đồng quy. (Đã sửa)
05-04-2021 - 17:36
Đây là đề thi thử của trường PTNK lần 1 năm 2021
04-04-2021 - 16:41
Cho tam giác ABC, M là trung điểm cạnh BC.ĐIểm P nằm trong tam giác thỏa mãn $\angle CPM=\angle PAB$. Cho em hỏi cách dựng ạ!
Community Forum Software by IP.Board
Licensed to: Diễn đàn Toán học