Đến nội dung


Chú ý

Nếu các bạn đăng kí thành viên mà không nhận được email kích hoạt thì hãy kiểm tra thùng thư rác (spam). Nếu không biết cách truy cập vào thùng thư rác thì các bạn chịu khó Google hoặc đăng câu hỏi vào mục Hướng dẫn - Trợ giúp để thành viên khác có thể hỗ trợ.


math_galois

Đăng ký: 08-11-2007
Offline Đăng nhập: 06-01-2012 - 12:23
*****

#202683 Kỹ năng tính nhẩm .)

Gửi bởi math_galois trong 24-06-2009 - 11:52

Thê mấy s mới dc coi là nhẩm nhanh ạk
e nhẩm cái phép tính kia mất 5s cơ Hình đã gửi Hình đã gửi

Mình post lên trang web chỉ nhiều cách tính nhẩm khá hay. Đây là web của 1 thầy giáo ở Ấn Độ lập ra để chỉ học sinh tính nhanh hơn.
http://www.glad2teac...tion_tricks.htm

Đây là account của thầy trên youtube
http://www.youtube.com/user/glad2teach

Hình đã gửi

Mình mới post topic về cái này, bạn vào xem nhé Hình đã gửi
http://diendantoanho...showtopic=44487


#197509 0,99... = 1 ?

Gửi bởi math_galois trong 10-05-2009 - 23:36

$0,[9] = 0,[1].9 = \dfrac{1}{9}.9 = 1$

:)


#196644 Các hằng đẳng thức đáng nhớ và cần nhớ

Gửi bởi math_galois trong 02-05-2009 - 12:37

Ngoài những hằng đẳng thức cơ bản trong sgk, còn có những hằng đẳng thức hay được sử dụng trong các bài toán như sau:

(1) $(a + b + c)^2 = a^2 + b^2 + c^2 + 2ab + 2bc + 2ac$


(2) $(a + b - c)^2 = a^2 + b^2 + c^2 + 2ab - 2bc - 2ac$


(3) $(a - b - c)^2 = a^2 + b^2 + c^2 - 2ab - 2ac + 2bc$


(4) $a^3 + b^3 = (a+b)^3 - 3ab(a + b)$


(5) $a^3 - b^3 = (a - b)^3 + 3ab(a - b)$


(6) $ (a + b + c)^3 = a^3 + b^3 + c^3 + 3(a+b)(b+c)(c+a)$


(7) $ a^3 + b^3 + c^3 - 3abc = (a + b + c)(a^2 + b^2 + c^2 - ab - bc - ac)$


(8) $(a - b)^3 + (b - c)^3 + (c - a)^3 = 3(a - b)(b - c)(c - a)$


(9) $(a + b)(b + c)(c + a) - 8abc = a(b - c)^2 + b(c - a)^2 + c(a - b)^2$


(10) $ (a + b)(b+c)(c+a) = (a+b+c)(ab+bc+ca)-abc$


(11) $ ab^2+bc^2+ca^2 - a^2b - b^2c - c^2a = \dfrac{(a-b)^3+(b-c)^3+(c-a)^3}{3} $


(12)$ ab^3+bc^3+ca^3 - a^3b-b^3c-c^3a = \dfrac{(a+b+c)[(a-b)^3+(b-c)^3+(c-a)^3]}{3}$


(13) $a^n - b^n = (a - b)(a^{n - 1} + a^{n - 2}b + a^{n - 3}b^2 + ... + a^2b^{n - 3} + ab^{n - 2} + b^{n - 1} )$


(14) Với n lẻ:
$a^n + b^n = (a + b)(a^{n - 1} - a^{n - 2}b + a^{n - 3}b^2 - ... + a^2b^{n - 3} - ab^{n - 2} + b^{n - 1})$


(15) Nhị thức Newton:
$(a + b)^n = a^n + \dfrac{n!}{(n-1)!1!} a^{n - 1}b + \dfrac{n!}{(n-2)!2!}a^{n - 2}b^2 + ... + \dfrac{n!}{(n-k)!k!}a^{n - k}b^k+ ... + \dfrac{n!}{2!(n-2)!}a^2b^{n - 2}+\dfrac{n)!}{1!(n - 1)!}ab^{n - 1} + b^n$


Các bạn hãy cố gắng chứng minh các hằng đẳng thức từ (1) -> (12) xem như là bài tập :)
Ai có hằng đẳng thức nào thú vị, post lên mình sẽ thêm vào.


#180090 $RS$ là tiếp tuyến của $(O)$.

Gửi bởi math_galois trong 21-02-2008 - 22:25

Cho đường tròn $(O)$ có đường kính $AB$. Gọi $I,J$ là 2 điểm thuộc $AB$ và đối xứng nhau qua $O$. Điểm $M$ là điểm thuộc $(O)$, khác $A$ và $B$. Giả sử $MI, MJ$ và $MO$ lần lượt cắt $(O)$ tại các giao điểm thức hai (khác $M$) là $P,Q$ và $S$. Hai đường thẳng $PQ$ và $AB$ cắt nhau tại $R$. Chứng minh rằng $RS$ là tiếp tuyến của $(O)$.