Đến nội dung


Chú ý

Do trục trặc kĩ thuật nên diễn đàn đã không truy cập được trong ít ngày vừa qua, mong các bạn thông cảm.

Nếu các bạn đăng kí thành viên mà không nhận được email kích hoạt thì hãy kiểm tra thùng thư rác (spam). Nếu không biết cách truy cập vào thùng thư rác thì các bạn chịu khó Google hoặc đăng câu hỏi vào mục Hướng dẫn - Trợ giúp để thành viên khác có thể hỗ trợ.


An Infinitesimal

Đăng ký: 25-05-2005
Offline Đăng nhập: Riêng tư
****-

#716765 $\lim_{x\rightarrow 0} (1+x^2)^{cotg(x)^2}...

Gửi bởi An Infinitesimal trong 20-10-2018 - 23:01

$\lim_{x\rightarrow 0} (1+x^2)^{\cot^2 x}.$

 

 

Ta có $$(1+x^2)^{\cot^2 x} = e^{\cot^2 x \ln{(1+x^2)}}.$$

 

Hơn nữa, 

$$\lim_{x\to0}\cot^2 x \ln{(1+x^2)}= \lim_{x\to0}\cos^2 x \frac{\ln{(1+x^2)}}{x^2}\frac{1}{\frac{\sin^2x}{x^2}}=1. $$

 

Suy ra $$\lim_{x\to0} (1+x^2)^{\cot^2 x} =e.$$




#716639 Chứng minh dãy số sau có giới hạn $L$

Gửi bởi An Infinitesimal trong 16-10-2018 - 18:50

dxuhivlrwf9g2f4qd.png
Giả sử √x=L.
Anh chị giúp e chứng minh dãy trên là hữu hạn và có giới hạn là L với.
Em rất cảm ơn ạ :)

 

Nếu không có giả thiết $a>0$ thì đề sai.

 

Khi $a>0,$ dùng BĐT Cauchy, suy ra $u_n\ge \sqrt{x} \forall n\ge 1.$ Hơn nữa, $u_{n}-u_{n-1}=\frac{x-u_{n-1}^2}{2u_{n-1}}\le 0 \forall n\ge 2.$
Vì thế $\left\{ u_n\right\}_{n\ge 2}$ là dãy giảm và bị chặn dưới. Do đó, dãy này hội tụ. Gọi $b= \lim u_n, b\ge \sqrt{x}.$

 

Cho hệ thức truy hồi qua giới hạn, ta nhận được phương trình: $b= \frac{1}{2}\left( b+\frac{x}{b}\right).$ Suy ra $b=L=\sqrt{x}.$ Điều cần phải chứng minh.




#716226 Cho $x\to +\infty$. Chứng minh rằng: $\frac...

Gửi bởi An Infinitesimal trong 02-10-2018 - 07:38

Cho $x\to +\infty$. Chứng minh rằng: $\frac{arctan(x)}{1+x^2}=O(\frac{1}{x^2})$

 

Điều này dễ thấy vì $\lim_{x\to \infty} \arctan x=\frac{\pi}{2}.$




#714695 Cho dãy số (un):

Gửi bởi An Infinitesimal trong 22-08-2018 - 22:57

"Ngịch đảo" ta sẽ dẫn ra dãy truy hồi tuyến tính $2v_{n+2}=v_{n+1}+v_{n}, n\ge 1,$ trong đó $v_n= \frac{1}{u_n}.$

 

Giải tìm $v_n$ theo $n$. Từ đó, ta xác định được $\lim u_n.$




#713654 Chứng minh rằng: $n!>(\frac{n}{3})^...

Gửi bởi An Infinitesimal trong 01-08-2018 - 16:01

 

 

Chứng minh rằng: $n!>(\frac{n}{3})^{n}$ với $\forall n\in\mathbb{N}^*$

 

Bất đẳng thức "mạnh hơn" là $n!>(\frac{n}{e})^{n} \forall n\ge 1.$

 

Đặt $u_n= \dfrac{n!}{\left(\frac{n}{e}\right)^n}.$

 

Ta có $\frac{u_{n+1}}{u_n}=\dfrac{e}{\left(1+\frac{1}{n}\right)^n}>1.$

 

Lưu ý: Khi định nghĩa, $e$, ta đã có dãy $\left\{\left(1+\frac{1}{n}\right)^n\right\}$ là dãy tăng và hội tụ về $e.$

 

Hơn nữa, $u_1>1$ nên $u_n>1 \forall n\ge 1.$ Suy ra điều phải chứng minh.




#713053 ${{u}_{n+1}}=\dfrac{u_{n...

Gửi bởi An Infinitesimal trong 22-07-2018 - 21:12

Mình đang muốn hướng tìm số hạng tổng quát. Liệu có tìm được không nhỉ?

 

Hãy cho mình một lý do để ta lại đi theo tiếp cận phức tạp hơn hướng đơn giản?




#712565 Tìm giới hạn dãy $1+\frac{1}{2} +...+\frac...

Gửi bởi An Infinitesimal trong 15-07-2018 - 13:23

Tìm giới hạn dãy $1+\frac{1}{2} +...+\frac{1}{n+1}$

P/s:Mong mọi người bỏ ra chút thời gian giúp mình với ạ!

 

Dùng đánh giá $\ln{(1+x)}\le x,$ ta có 

$\frac{1}{k}\ge \ln\left( 1+\frac{1}{k}\right)=\ln{(k+1)}-\ln k. $

Suy ra 

$$1+\frac{1}{2} +...+\frac{1}{n+1}\ge \ln{(n+1).}$$

Do đó, 

$$\lim_{n\to\infty} \left(1+\frac{1}{2} +...+\frac{1}{n+1}\right)=\infty.$$




#708466 Chứng minh rằng $2<x_{n}.y_{n}<3$ với m...

Gửi bởi An Infinitesimal trong 15-05-2018 - 20:48

Cho 2 dãy số $(x_n),(y_n)$ thoả mãn:

$x_1=y_1=\sqrt{3}$

$x_{n+1}=x_n+\sqrt{1+x_{n}^{2}}$

$y_{n+1}=\frac{y_n}{1+\sqrt{1+y_{n}^{2}}}$

Chứng minh rằng $2<x_{n}y_{n}<3$ với mọi $n\geq2$

 

Dùng lượng giác, ta sẽ tìm ra SHTQ của hai dãy. Từ đó, ta chứng minh được điều cần phải chứng minh.




#707940 Tích phân bội

Gửi bởi An Infinitesimal trong 08-05-2018 - 23:45

Tính các tích phân kép sau:

$I=\int_{D}\sqrt{2x-x^2-y^2}d(x,y)$, $D$ giới hạn bởi $x^2-2x+y^2\leq 0$

$I=\int_{D}\left | {2x-x^2-y^2}\right |d(x,y)$, $D$ giới hạn bởi $x^2+y^2\leq2y.$

 

Bài 1: Dùng phép đổi biến $x=1+r\cos\theta,\, y=r\sin\theta$. Miền trong "tọa độ cực" này là $0\le r\le 1, 0\le \theta\le 2\pi.$

Định thức Jacobi phép biến đổi cũng là $r$.

 

Bài 2: tương tự bài 1.

 

Bạn kiểm tra thử!




#707939 Chứng minh hàm số liên tục

Gửi bởi An Infinitesimal trong 08-05-2018 - 23:42

Chứng minh 

1) f(x) liên tục tại x = 0 

2) Hàm không khả vi tại mọi điểm

1) Vì $|f(x)|\le |x| \forall x\in \mathbb{R}$ nên, theo định lý kẹp, hàm số liên tục tại $0.$

 

2)

Xét tính khả vi của $f$ tại mỗi $a\in \mathbb{R}.$

 

TH1:  $a=0.$ Đặt $g(x)=\frac{f(x)-f(0)}{x-0}=\frac{f(x)}{x}.$ 

 

TH2: $a\neq 0.$

Xét $\left\{x_n\right\}$ hội tụ về $a$ thỏa $ x_{2n}\in \mathbb{R}\setminus \mathbb{Q}, x_{2n+1}\in \mathbb{Q}.$

 

 

Khi đó, $g(x_{2n})=1,\, g(x_{2n+1})=0.$ Khi đó,

  $$\lim_{n\to\infty} g(x_{2n})=1\neq 0=\lim_{n\to\infty} g(x_{2n+1}).$$

Suy ra, $\lim_{x\to 0} g(x)$ không tồn tai. Do đó, $f$ không khả vi tại $a=0.$

TH2: $a\neq 0.$

Ta chứng minh $f$ không liên tục tại $a.$

 Xét $\left\{x_n\right\}$ hội tụ về $a$ thỏa $ x_{2n}\in \mathbb{R}\setminus \mathbb{Q}, x_{2n+1}\in \mathbb{Q}.$

Khi đó, $f(x_{2n})=x_{2n},\,  g(x_{2n+1})=0.$ Khi đó,

  $$\lim_{n\to\infty} f(x_{2n})=a\neq 0=\lim_{n\to\infty} f(x_{2n+1}).$$

 

 Do đó, $f$ không liên tục tại $a\neq 0.$

Suy ra, $f$ không khả vi tại $a\neq 0.$ 




#707319 $y''+2xy'-y=0$

Gửi bởi An Infinitesimal trong 29-04-2018 - 20:29

Những bài thấy "vô phương" thì thử tìm nghiệm dạng chuỗi.




#707317 Giải pt vi phân cấp hai $y''(1+y)=y'^2+y'$

Gửi bởi An Infinitesimal trong 29-04-2018 - 20:13

Giải các phương trình vi phân cấp $2$ sau:

$a)$ $y''=\frac{y'}{\sqrt{y}}$

$b)$ $y''(1+y)=y'^2+y'$

 

Giải chính xác là điều rất khó và gần như "không thể".

 

"Giải" a)

 

Lấy tích phân 2 vế theo biến $x$ (giả sử $y$ là hàm theo $x$), ta thu được

$y' =2\sqrt{y}+C.$

 

Vấn đề nhại cảm bắt đầu hiện ra từ đây. 

 

Tồn tại $x$ sao cho $2\sqrt{y}+C=0$? 

Nếu làm ẩu thì chia 2 vế cho $2\sqrt{y}+C$ để đưa về dạng tách biến.

(Làm như thế đã làm mất đi nghiệm hằng thỏa $2\sqrt{y}+C=0$ trên tập xác định hàm $y$. Như thế cũng chưa chắc đã đủ nghiệm).

 

 

"Giải" b)

 
PTVP có nghiệm $y=-1, y=-x+C$ nhưng trong trường hợp, nghiệm khác 2 nghiệm này cũng không thể cho phép ta chia hai vế cho $(1+y)(1+y')$.
Tiếp theo, ta đành "làm ẩu":
Chia 2 vế cho $(1+y)(1+y'), $ ta nhận được
\[\frac{y''}{1+y'}= \frac{y'}{1+y}.\]
Lấy tích phân 2 vế theo biến $x$, ta nhận được
$$ \ln |1+y'|= \ln |1+y|+C.$$
Ta có thể lý luận để dẫn đến $1+y'= k (1+y).$
Đến đây, ta có thể dễ dàng tìm nghiệm.



#707314 $\lim_{n\rightarrow+\infty }\left ( 1 -...

Gửi bởi An Infinitesimal trong 29-04-2018 - 19:49

Chưa rõ chỗ này, bạn giải thích thêm nhé.

Bài giới hạn trên mình có đọc được lời giải chi tiết, bạn giải như vậy không thể nhìn ra vấn đề tại sao lại rút gọn được vậy, bài này rút gọn khó nhận ra, từ đầu mình có nghĩ đến khai triển nhưng lại nhìn không ra.

 

1) Bạn có quen với BĐT $e^u \ge \frac{u^k}{k!}, \forall u>0, k\in \mathbb{N}.$

Khi đó, $3^n= e^{n\ln 3} \ge \frac{n^2\ln^2 3}{2!}.$

 

Do đó, \[\left|\frac{n}{3^n} \right| \le \frac{2}{n \ln^2 3}, \forall n\in \mathbb{N}.\] 

Sử dụng định lý kẹp, ta suy ra đpcm.

 

Nếu không thì bạn dùng khai triển nhị thức Niuton và giữ lại số hạng thứ chứa mũ 2.

 

2) 

Vì $1-\frac{1}{k^2}= \frac{(k-1)(k+1)}{k^2} \forall k=\overline{2,n}$ nên 

\[\prod_{k=2}^n \left( 1-\frac{1}{k^2}\right)=\dfrac{ \displaystyle \prod_{k=2}^n (k-1)\prod_{k=2}^n (k+1)}{\prod_{k=2}^nk^2}= \dfrac{(n-1)! . \frac{(n+1)!}{2}}{(n!)^2}=\frac{n+1}{2n}.\]




#706462 Hàm nhiều biến

Gửi bởi An Infinitesimal trong 19-04-2018 - 22:04

Bài toán:

 

 

 Cho hàm $f:\mathbb{R}^2\rightarrow \mathbb{R}$ liên tục. Gọi D là hình tròn đóng tâm $O(0;0)$ bán kính $r$. Tính $\lim_{r\to0}\frac{1}{r^2}\iint_{D_r}f(x,y)dxdy$.

 

Giải:

 

Áp dụng định lý giá trị trung bình, ta có $\frac{1}{\pi r^2}\iint_{D_r} f(x,y) dxdy= f(x_r,y_r),$ trong đó $(x_r,y_r)\in D_r$.

 

Ý tưởng thô: Khi $r\to 0^{+}, \, (x_r,y_r)\to (0,0)$. Hơn nữa, $f$ liên tục tại $(0,0)$. Suy ra $\lim_{r\to0}\frac{1}{r^2}\iint_{D_r}f(x,y)dxdy=\pi f(0,0).$.




#706446 Hàm nhiều biến

Gửi bởi An Infinitesimal trong 19-04-2018 - 20:47

 

+ Cho hàm $f:\mathbb{R}^2\rightarrow \mathbb{R}$ liên tục. Gọi D là hình tròn đóng tâm $O(0;0)$ bán kính $r$. Tính $\lim_{r\to0}\frac{1}{r}\iint_{D}f(x,y)dxdy$.

Gọi $D_r$ là hình tròn đóng tâm $O(0;0)$ bán kính $r$ và $M_r= \displaystyle\max_{(x,y)\in D_r}\{|f(x,y)|\}$.

 

Khi đó, $\left| \iint_{D_r}f(x,y)dxdy\right|\le  \iint_{D_r} M_1dxdy= M_1 \pi r^2, \forall r\le 1.$

 

Dùng Định lý kẹp, ta có  $\displaystyle \lim_{r\to 0^{+}} \frac{1}{r}\iint_{D_r}f(x,y)dxdy=0. $