Đến nội dung

An Infinitesimal

An Infinitesimal

Đăng ký: 25-05-2005
Offline Đăng nhập: Riêng tư
****-

Trong chủ đề: Chứng minh $P(x)$ chia hết cho đa thức $x-1$

10-02-2022 - 21:57

Bạn cho mình hỏi làm sao để chứng minh các nghiệm phức đó đều phân biệt vậy bạn?

 

Ta có $\epsilon_k= \cos\left(\frac{2k \pi}{5}\right)+i \sin\left(\frac{2k \pi}{5}\right), k=\overline{1,5}.$

Đến đây được rồi phải không bạn?

-----------

Đổi $i$ thành $k$ để tránh nhầm lẫn với số phức đơn vị.


Trong chủ đề: Xét sự hội tụ của tích phân $K=\int_{1}^{+\infty }\fr...

10-02-2022 - 21:51

Xét sự hội tụ của tích phân sau:

$K=\int_{1}^{+\infty }\frac{\sqrt{x}.ln(x)}{\sqrt{x+1}\sqrt[5]{x^7+1}}dx$

Em cảm ơn.

Dùng tiêu chuẩn so sánh với hàm phụ là $f(x)=\frac{1}{x^{7/6}}.$ Ta có thể thay thế $\frac{7}{6}$ bởi bất kỳ số thực nào thuộc $\left(1;\frac{7}{5}\right).$


Trong chủ đề: Chứng minh $P(x)$ chia hết cho đa thức $x-1$

10-02-2022 - 21:48

Giả sử $P(x), Q(x), R(x), S(x)$ là các đa thức thỏa: $P(x^5)+xQ(x^5)+x^2R(x^5)=(x^4+x^3+x^2+x+1)S(x)$. Chứng minh $P(x)$ chia hết cho đa thức $x-1$.

 

Gọi $\varepsilon_i, i=1, 2, \cdots 5,$ là các nghiệm phức phân biệt của phương trình $x^5=1.$ Khi đó, ta có 

$$P(1)+\varepsilon_i Q(1)+\varepsilon_i^2R(1)=0$$ với mọi $i=\overline{1,5}.$

Đa thức bậc không vượt quá hai $P(1)+Q(1)z+R(1)z^2$ có hơn 2 nghiệm. Do đó, đa thức này chính là đa thức $0$. Vì thế $P(1)=0.$ Từ đó, ta suy ra điều cần chứng minh.


Trong chủ đề: GPTVP: $(x+1)y'-1= 3y+x(x+2)$

06-02-2022 - 11:32

Giải phương trình vi phân:

\[ (x+1)y'-1= 3y+x(x+2). \]

 

PTVP này thiếu thông tin khiến cho việc giải quyết trở nên khó khăn. Ở đây, ta xem xét PTVP trên $\mathbb{R}.$

Phương trình vi phân được viết lại như sau

 

$$[(x+1)^{-3}y]^{\prime}=(x+1)^{-2},\ \forall x\in \mathbb{R}\setminus\{-1\}.$$

Do đó $(x+1)^{-3}y=-\frac{1}{(x+1)^2}+C_1$ với mọi $x>-1$

Do đó, $y= x+1+C_1(x+1)^3.$ với mọi $x> -1$.

Tương tự vậy, ta có $y= x+1+C_2(x+1)^3.$ với mọi $x< -1$. Nhờ tính liên tục, ta có $y(-1)=0=(-1)+1+C_1(-1+1).$

Do đó các hàm số $y(x)=\begin{cases} \begin{matrix} x+1+C_1(x+1)^3\quad if x\ge -1,\\ x+1+C_2(x+1)^3\quad if x<-1,\end{matrix}\end{cases}$

trong đó $C_1, C_2$ là các số thực tùy ý. Ở đây, ta đã kiểm những hàm số này thỏa các điều kiện về sự khả vi lẫn phương trình vi phân.


Trong chủ đề: $xf'(x) +2f(x) =0 \, \forall x\in (-1:1)$

06-02-2022 - 11:21

Câu hỏi : Tìm tất cả các hàm f(x) xác định trên (-1;1) và thỏa mãn 
                $$xf'(x) +2f(x) =0 \, \forall x\in  (-1:1)$$

Ta có $(x^2 f(x))^{\prime}=0$  với mọi $x\in (0;1).$

Do đó, tồn tại hằng số $C$ sao cho $x^2 f(x)=C$ với mọi $x\in  (0;1).$

Với $x=0$, ta có $C=0.$ Do đó $f(x)=0$ với mọi $x\in (-1;1)\setminus\{0\}.$ 

Hơn nữa, nhờ tính liên tục của hàm $f$, ta có $f(0)=0.$ 

Vậy có duy nhất hàm $f=0$  (đã được kiểm tra thỏa các điều kiện).