Đến nội dung


Chú ý

Nếu các bạn đăng kí thành viên mà không nhận được email kích hoạt thì hãy kiểm tra thùng thư rác (spam). Nếu không biết cách truy cập vào thùng thư rác thì các bạn chịu khó Google hoặc đăng câu hỏi vào mục Hướng dẫn - Trợ giúp để thành viên khác có thể hỗ trợ.


pth_tdn

Đăng ký: 29-05-2009
Offline Đăng nhập: 10-01-2013 - 08:10
***--

Bài viết của tôi gửi

Trong chủ đề: Đề thi vào chuyên toán THPT chuyên Hà Nội-Amsterdam

13-08-2010 - 09:19

Theo em nghĩ trường hợp 0<x<1 có thể làm thế này: $1-x+x^3-x^4+x^5-x^7+x^8=(1-x)+x^3(1-x)+x^5(1-x)(1+x)+x^8>0$

Trong chủ đề: Lau khong post bai

25-04-2010 - 14:14

n<3 không thỏa. Nếu n từ 3 trở lên thì $2^n \vdots 8$ nên $n^2 \equiv 2 (mod 8)$ không thể xảy ra.

Trong chủ đề: Lau khong post bai

25-04-2010 - 08:18

Do $2^n$ không chia hết cho 3; $3162 \vdots 3$ nên $n^2 \equiv 1(mod 3)$
$\rightarrow 2^n \equiv -1 (mod 3)$
Suy ra n lẻ.
Do đó VT lẻ (trong khi VP chẵn)
Vậy PT vô nghiệm nguyên.

Trong chủ đề: !?

24-04-2010 - 13:57

Ta cũng dễ cm được $x \vdots y$
Đặt $x=yk$
$(yk)^y=y^{yk} \rightarrow k^y=y^{y(k-1)} \rightarrow k=y^{k-1}$
Do x,y phân biệt nên k>1.
Với k=2: Xét y>2 thì $y^{k-1}=y>k$
Giả sử điều trên đúng với k=n>2, nghĩa là: $y^{n-1}>n$.
Với k=n+1:
$y^{k-1}=y^n=y^{n-1}.y>n.y>2n>n+1$ (do n>1 và y>2)
Vậy với y>2, k>1 thì $ y^{k-1}>k$
=>y=1 hoặc 2.
Nếu y=1 thì k=1 (loại)
Nếu y=2 thì $k=2^{k-1}$
Tiếp tục dùng quy nạp: Với k=3 thì: $3<2^2$
Giả sử điều trên đúng với k=q>3.
$2^{(k+1)-1}=2^{k-1}.2>2q>q+1$
Vậy với mọi k>2 thì $k<2^{k-1}$
=>k=2.
Ta được (x,y)=(2,4),(4,2).

Trong chủ đề: T7 (:D)

23-04-2010 - 20:29

Cách em hơi dở >"<...
$A=\dfrac{1}{5}(1+\dfrac{1}{3}+...)$
$=\dfrac{1}{5}[1+\dfrac{1}{3}+\dfrac{1}{5}+(\dfrac{1}{7}+...+\dfrac{1}{15})+(\dfrac{1}{17}+...+\dfrac{1}{25})+(\dfrac{1}{27}+...+\dfrac{1}{35})+(\dfrac{1}{37}+...+\dfrac{1}{45})+...]$
$>\dfrac{1}{5}(1+\dfrac{1}{3}+\dfrac{1}{5}+5.\dfrac{1}{15}+5.\dfrac{1}{25}+5.\dfrac{1}{35}+5.\dfrac{1}{45})$
$>\dfrac{1}{5}.(1+\dfrac{2}{3}+\dfrac{2}{5}+\dfrac{1}{7}+\dfrac{1}{9})=\dfrac{1}{5}.(\dfrac{31}{15}+\dfrac{16}{63})>\dfrac{1}{5}.(2+\dfrac{1}{4})=\dfrac{9}{20}$