Đến nội dung


Chú ý

Nếu các bạn đăng kí thành viên mà không nhận được email kích hoạt thì hãy kiểm tra thùng thư rác (spam). Nếu không biết cách truy cập vào thùng thư rác thì các bạn chịu khó Google hoặc đăng câu hỏi vào mục Hướng dẫn - Trợ giúp để thành viên khác có thể hỗ trợ.


pth_tdn

Đăng ký: 29-05-2009
Offline Đăng nhập: 10-01-2013 - 08:10
***--

#237127 Đề thi vào chuyên toán THPT chuyên Hà Nội-Amsterdam

Gửi bởi pth_tdn trong 13-08-2010 - 09:19

Theo em nghĩ trường hợp 0<x<1 có thể làm thế này: $1-x+x^3-x^4+x^5-x^7+x^8=(1-x)+x^3(1-x)+x^5(1-x)(1+x)+x^8>0$


#236665 BĐT8

Gửi bởi pth_tdn trong 03-05-2010 - 06:35

CMR: Với a,b,c,d dương; abcd=1 thì:
$\dfrac{1}{a^4+b^4+c^4+1}+\dfrac{1}{b^4+c^4+d^4+1}+\dfrac{1}{c^4+d^4+a^4+1}+\dfrac{1}{d^4+a^4+b^4+1}<\dfrac{1}{4}$


#235529 !?

Gửi bởi pth_tdn trong 24-04-2010 - 13:57

Ta cũng dễ cm được $x \vdots y$
Đặt $x=yk$
$(yk)^y=y^{yk} \rightarrow k^y=y^{y(k-1)} \rightarrow k=y^{k-1}$
Do x,y phân biệt nên k>1.
Với k=2: Xét y>2 thì $y^{k-1}=y>k$
Giả sử điều trên đúng với k=n>2, nghĩa là: $y^{n-1}>n$.
Với k=n+1:
$y^{k-1}=y^n=y^{n-1}.y>n.y>2n>n+1$ (do n>1 và y>2)
Vậy với y>2, k>1 thì $ y^{k-1}>k$
=>y=1 hoặc 2.
Nếu y=1 thì k=1 (loại)
Nếu y=2 thì $k=2^{k-1}$
Tiếp tục dùng quy nạp: Với k=3 thì: $3<2^2$
Giả sử điều trên đúng với k=q>3.
$2^{(k+1)-1}=2^{k-1}.2>2q>q+1$
Vậy với mọi k>2 thì $k<2^{k-1}$
=>k=2.
Ta được (x,y)=(2,4),(4,2).


#235463 T7 (:D)

Gửi bởi pth_tdn trong 23-04-2010 - 20:29

Cách em hơi dở >"<...
$A=\dfrac{1}{5}(1+\dfrac{1}{3}+...)$
$=\dfrac{1}{5}[1+\dfrac{1}{3}+\dfrac{1}{5}+(\dfrac{1}{7}+...+\dfrac{1}{15})+(\dfrac{1}{17}+...+\dfrac{1}{25})+(\dfrac{1}{27}+...+\dfrac{1}{35})+(\dfrac{1}{37}+...+\dfrac{1}{45})+...]$
$>\dfrac{1}{5}(1+\dfrac{1}{3}+\dfrac{1}{5}+5.\dfrac{1}{15}+5.\dfrac{1}{25}+5.\dfrac{1}{35}+5.\dfrac{1}{45})$
$>\dfrac{1}{5}.(1+\dfrac{2}{3}+\dfrac{2}{5}+\dfrac{1}{7}+\dfrac{1}{9})=\dfrac{1}{5}.(\dfrac{31}{15}+\dfrac{16}{63})>\dfrac{1}{5}.(2+\dfrac{1}{4})=\dfrac{9}{20}$


#235389 Min

Gửi bởi pth_tdn trong 23-04-2010 - 11:58

Cho x,y,z dương thỏa: x+2y+3z=1.
Tìm GTNN của: $x+4y+9z+\dfrac{9}{x}+\dfrac{4}{y}+\dfrac{1}{z}+\dfrac{13}{x+y}+\dfrac{5}{x+z}+\dfrac{10}{y+z}+\dfrac{14}{x+y+z}$


#199831 Collection: Cấu tạo số

Gửi bởi pth_tdn trong 02-06-2009 - 10:49

Bài 14 :
Các chữ số a;b;c phải bé hơn 6 do 7!>1000.
Nếu có 2 chữ số 6 thì a!+b!+c!>1000. Vậy trong 3 số có nhiều nhất 1 chữ số 6.
*Giả sử đó là a thì không thỏa do 6bc=720 (!)
*Nếu đó là các số b hoặc c thì a phải bé hơn 6 (do chỉ có nhiều nhất 1 số bằng 6). Khi đó abc cũng bé hơn 6!=720.
Do đó, các chữ số a;b;c bé hơn 6.
a;b;c không cùng bằng hoặc bé hơn 4 do a!+b!+c!>99
Vậy, trong a;b;c có ít nhất 1 chữ số 5.
Ta có: a!+b!+c!<3.5!=360
Do đó, a không bằng 5.
*b=5: Ta có a=1 hoặc a=2.
Nếu a=1 thì 29<c!<79 ->vô nghiệm.
Nếu a=2 thì c=5. abc=255 không thỏa mãn.
*c=5. Tương tự, ta có a=1 hoặc a=2.
Nếu a=1 thì 1b5=121+b!. Suy ra b! tận cùng bằng 4. Do đó b=4.
Thử lại thấy số 145=1!+4!+5! thỏa mãn.
Nếu a=2 thì b=5. Số 255 không thỏa mãn.

Đáp số: abc=145.
***Các số có 3 chữ số đều có dấu gạch đầu.
  • MIM yêu thích


#199799 Sử dụng tính chẵn lẻ trong giải toán số học

Gửi bởi pth_tdn trong 01-06-2009 - 22:58

3. $ n^2 $ chia 4 dư 0 hoặc 1.
Nên $ n^2+2002$ chia 4 dư 2 hoặc 3 (2002 chia 4 dư 2) ->không thể là số chính phương được.