Đến nội dung


Chú ý

Nếu các bạn đăng kí thành viên mà không nhận được email kích hoạt thì hãy kiểm tra thùng thư rác (spam). Nếu không biết cách truy cập vào thùng thư rác thì các bạn chịu khó Google hoặc đăng câu hỏi vào mục Hướng dẫn - Trợ giúp để thành viên khác có thể hỗ trợ.


cvp

Đăng ký: 18-06-2009
Offline Đăng nhập: 22-04-2013 - 20:30
****-

Bài viết của tôi gửi

Trong chủ đề: Đề thi HSG lớp 9 tỉnh Hải Dương năm học 2011-2012

20-07-2012 - 14:03

Bài 3. (2,0 điểm)
2. Cho $n$ là số nguyên dương và $m$ là ước nguyên dương của $2{n^2}$. Chứng minh rằng ${n^2} + m$ không là số chính phương.


TH 1: m=1
$\Rightarrow n^2+1$ là số chính phương mà $n^2$ là số chính phương $\Rightarrow n^2=0$ (Loại vì n nguyên dương).
TH 2: m=2
$\Rightarrow n^2+2$ là số chính phương.
$n^2+1$ không thể là scp nên $n^2$ và $n^2+2$ là 2 số cp liên tiếp.
$\Rightarrow n^2+2=(n+1)^2 \Leftrightarrow 2n=1$ (loại).
TH 3: $m=2n^2$.
$\Rightarrow n^2+m=3n^2$ không thể là scp (loại).
TH 4: m>2.
Suy ra $m$ thuộc ước của $k$.
Đặt $n=m.k$. (ĐK: m và k khác 0)
Ta có:
$n^2+m=m^2.k^2+m=m(mk^2+1)$
Dễ dàng chứng minh $m$ và $m.k^2+1$ nguyên tố cùng nhau. (1)
Giả sử:$n^2+m$ là số cp. (2)
Từ (1) và (2) suy ra:
$m$ và $m.k^2+1$ là scp.
Đặt $m=a^2 \Rightarrow mk^2=a^2k^2$ nên $mk^2$ là scp. (3)
Mặt khác: $mk^2+1$ cũng là scp (4)
Từ (3) và (4) suy ra $mk^2=0$. (vô lý vì m và k khác 0).
Vậy $m>2$ thì $n^2+m$ không là scp.
Từ 4 TH trên ta suy ra ĐPCM.

Trong chủ đề: $\overline{abc}.5= \overline{dab}$

30-05-2012 - 11:26

tim số $\overline{abc}$ biết
$\overline{abc}.5= \overline{dab}$


$\overline{abc}.5=\overline{dab}\Leftrightarrow \overline{ab}.50+c.5=d.100+\overline{ab}\Leftrightarrow 49\overline{ab}+c.5=d.100 (1)$.
Ta có: $d.100 \leq 9.100=900 \Leftrightarrow 49\overline{ab}+5c\leq 900 \Leftrightarrow \overline{ab} \leq (900-0):49 \approx 18,4 (2)$.
Mặt khác từ $(1)$ ta có: $d.100 \vdots 5; 5c \vdots 5 \Rightarrow 49.\overline{ab} \vdots 5 \Rightarrow \overline{ab} \vdots 5 (3)$.
Từ $(2); (3)$ suy ra $\overline{ab}={10;15}$.
Nếu $\overline{ab}=10 \Rightarrow 490+5c=100d \Leftrightarrow 98+c=20d$ mà $20d \vdots 10$ nên $c=2; d=5$.
Ta có số $\overline{abc}=102$ (Thỏa mãn).
Nếu $\overline{ab}=15\Rightarrow 735+5c=100d\Leftrightarrow 147+c=20d$ mà $20d \vdots 10$ nên $c=3; d=150:20=7,5$ ( Loại).
Vậy số $\overline{abc}$ cần tìm là : $102$.

Trong chủ đề: $a.b.\bar{ab}=\bar{bbb}$

30-05-2012 - 11:01


tìm các chữ số a,b khác 0 thỏa mãn:
$a.b.\overline{ab}=\overline{bbb}$


$ab.\overline{ab}=\overline{bbb}\Leftrightarrow ab(10a+b)=111.b\Leftrightarrow 10a^2b+ab^2=111.b\Leftrightarrow 10a^2+ab=111\Leftrightarrow a(10a+b)=111$ ( do $b$ khác 0)
$0\leq a \leq 9; a \in $ ước của 111 $\Rightarrow a={1;3}$.
Nếu $a=1$ thì $10+b=111$ (Loại).
Nếu $a=3$ thì $3(30+b)=111\Leftrightarrow b=7$
Thử lại: $3.7.37=777=111.7$ (đúng)
Vậy 2 chữ số $a;b$ cần tìm là $3;7$.

Trong chủ đề: TỤ HỌP CỦA MA CŨ VÀ MA MỚI VÀO : D

30-05-2012 - 10:46

hì, nick này là của anh em cho ( đỡ phải tạo :P)!
Diễn đàn nhiều VP nhưng có vẻ VP rất ít onl có mỗi em rảnh hay sao ý :(.

Trong chủ đề: Ảnh thành viên

30-05-2012 - 07:18

anh Kiên đẹp zai quá Hình đã gửi