Đến nội dung


Chú ý

Nếu các bạn đăng kí thành viên mà không nhận được email kích hoạt thì hãy kiểm tra thùng thư rác (spam). Nếu không biết cách truy cập vào thùng thư rác thì các bạn chịu khó Google hoặc đăng câu hỏi vào mục Hướng dẫn - Trợ giúp để thành viên khác có thể hỗ trợ.


nhathuyenqt

Đăng ký: 04-08-2009
Offline Đăng nhập: 06-02-2013 - 12:05
*----

Bài viết của tôi gửi

Trong chủ đề: Topic nhận đề Hình học

31-08-2012 - 19:54

Hình vẽ cho đề của em

Trong chủ đề: Topic nhận đề Hình học

31-08-2012 - 19:46

ĐỀ:
Cho tam giác ABC và $A_{1}B_{1}B_{1}$ đối xứng nhau qua tâm đường tròn nội tiếp chung, bán kính r. Chứng minh rằng tích các diện tích của tam giác ABC, $A_{1}B_{1}B_{1}$ và sau tam giác tạo thành do các cạnh của ABC và $A_{1}B_{1}B_{1}$ cắt nhau bằng $r^{16}$.
Bài giải:
Dựng hình như hình vẽ
Ta có $OB=OB_{1}$, $OC=OC_{1}$
=> $BCB_{1}C_{1}$ là hình bình hành
=> $BC=B_{1}C_{1}$
Tương tự
$AC=A_{1}C_{1}$
$AB=A_{1}B_{1}$
=>$\Delta ABC=\Delta A_{1}B_{1}C_{1}$
Xét các hình bình hành $BCB_{1}C_{1}$, $ACA_{1}C_{1}$, $ABA_{1}B_{1}$,
$ECE_{1}C_{1}$
Ta có $AD=A_{1}D{1} AE=A_{1}E{1}$
và $\widehat{A}=\widehat{A_{1}}$
Do đó
$\Delta ADE=\Delta A_{1}D_{1}E_{1}$
Tương tự
$\Delta B_{1}EK_{1}=\Delta BE_{1}K$
$\Delta D_{1}CK_{1}=\Delta DC_{1}K$
Ký hiệu
$S, S_{1}, S_{2}, S_{3}$ lần lượt là diện tích của $\Delta ABC,\Delta ADE,\Delta DC_{1}K,\Delta KBE_{1}$
Gọi $h_{a}, h_{b},h_{c}$ là các đường cao hạ từ các đỉnh ABC của $\Delta ABC$
Ta có
$S=pr=\frac{1}{2}a.h_{a}=\frac{1}{2}b.h_{b}=\frac{1}{2}c.h_{c}$
Gọi AM là đường cao $\Delta ADE$, AN là đường cao $\Delta ABC$, ta có
$S_{1}=\frac{1}{2}DE.AM$
Từ 2 tam giác đồng dạng ABC và ADE
$DE=\frac{a.(h_{a}-2r)}{h_{a}}$
$AM=h_{a}-2r$$AM=h_{a}-2r$
Vậy
$S_{1}=\frac{a.(h_{a}-2r)^{2}}{2h_{a}}=\frac{a.(\frac{2pr}{a}-2r)^{2}}{2h_{a}}=\frac{r^{2}.(p-a)^{2}}{S}$
Tương tự
$S_{2}=\frac{r^{2}.(p-b)^{2}}{S}$
$S_{3}=\frac{r^{2}.(p-c)^{2}}{S}$
Áp dụng định lý Hê-rông ta được
$S^{2}.S_{1}^{2}S_{2}^{2}.S_{3}^{2}=\frac{r^{12}(p-a)^{4}(p-b)^{4}(p-c)^{4}S^{2}}{S^{6}}=r^{12}.\frac{S^{4}}{p^{4}}=r^{16}$

Trong chủ đề: Topic nhận đề PT, BPT, HPT, HBPT

23-08-2012 - 18:37

ĐỀ: Giải hệ phương trình

$\left\{\begin{matrix} 23a^{2}+b^{2}=25ab+71a-27b+28,,,(1)) & \\ 24b^{2}+73b=25ab+25a-133,,,(2)& \end{matrix}\right.$

-------------------------------------

Bài giải


Hệ đã cho tương đương với

$\left\{\begin{matrix} 23a^{2}+b^{2}-71a+27b=25ab+28,,,, (3) & \\ 24b^{2}+73b-25a+161=25ab+28,,,(4) & \end{matrix}\right.$
Trừ (3) cho (4) vế theo vế, ta có
$23a^{2}-23b^{2}-46a-46b-161=0$
$\Leftrightarrow a^{2}-b^{2}-2a-2b-7=0$
$\Leftrightarrow (a -1)^{2}-(b+1)^{2}-7=0,,,(5)$

Từ (2) ta có

$24b^{2}+73b-25ab-25a+133=0$
$\Leftrightarrow (24b^{2}+48b+24)-(25ab+25a-25b-25)+84=0$
$\Leftrightarrow 24(b+1)^{2}-25(b+1)(a-1)+84=0 $ (6)

Từ (5) và (6) ta có hệ đã cho tương đương với

$\left\{\begin{matrix} (a -1)^{2}-(b+1)^{2}-7=0 & \\ 24(b+1)^{2}-25(b+1)(a-1)+84=0 & \end{matrix}\right.$

Đặt

$\left\{\begin{matrix} x=a-1 & \\ y=b+1 & \end{matrix}\right.$

Ta có

$\left\{\begin{matrix} x^{2}-y^{2}-7=0 & \\ 24y^{2}-25xy+84=0 ,,,,(*) & \end{matrix}\right.$
$\Leftrightarrow \left\{\begin{matrix} y^{2}x^{2}-y^{4}-7y^2=0& \\ (24y^{2}+84)^{2}=(25xy)^{2} \end{matrix}\right.$

$\Leftrightarrow \left\{\begin{matrix} 625x^{2}y^{2}-625y^{4}-4375y^2=0 & \\ 576y^{4}+7056+4032y^{2}=625x^{2}y^{2} & \end{matrix}\right.$

Trừ (7) cho (8), ta có
$49y^{4}+343y^{2}-7056=0$
Giải phương trình ta được
$y^{2}=9$ và $y^{2}=-16$ (loại)
$\Rightarrow y=\pm 3$
Xét y=3 thay vào (*) ta được $216-75x+84=0\Rightarrow x=4$
Với $\left\{\begin{matrix} x=4 & \\ y=3 & \end{matrix}\right. \Leftrightarrow \left\{\begin{matrix} a=5 & \\ b=2 & \end{matrix}\right.$

Xét y=-3 thay vào (*) ta được $216+75x+84=0\Rightarrow x=-4$
Với $\left\{\begin{matrix} x=-4 & \\ y=-3 & \end{matrix}\right. \Leftrightarrow \left\{\begin{matrix} a=-3 & \\ b=-4 & \end{matrix}\right.$

Vậy hệ có 2 nghiệm là (5,2) và (-3,-4)

Trong chủ đề: Topic nhận đề PT, BPT, HPT, HBPT

23-08-2012 - 18:19

ĐỀ: Giải hệ phương trình
$\left\{\begin{matrix} 23a^{2}+b^{2}=25ab+71a-27b+28,,,, (1)& \\24b^{2}+73b=25ab+25a-133,,,(2) \left \right \end{matrix}\right.$

-------------------------------------

Bài giải

Hệ đã cho tương đương với
$$\left\{\begin{matrix} 23a^{2}+b^{2}-71a+27b=25ab+28,,,, (3)& \\24b^{2}+73b-25a+161=25ab+28,,,(4) \left \right \end{matrix}\right.$$
Trừ (3) cho (4) vế theo vế, ta có
$23a^{2}-23b^{2}-46a-46b-161=0$$
\Leftrightarrow $a^{2}-b^{2}-2a-2b-7=0$$
$\Leftrightarrow $(a -1)^{2}-(b+1)^{2}-7=0$$ (5)

Từ (2) ta có

$24b^{2}+73b-25ab-25a+133=0$
$\Leftrightarrow (24b^{2}+48b+24)-(25ab+25a-25b-25)+84=0$
$\Leftrightarrow 24(b+1)^{2}-25(b+1)(a-1)+84=0 $ (6)

Từ (5) và (6) ta có hệ đã cho tương đương với

$\left\{\begin{matrix} (a -1)^{2}-(b+1)^{2}-7=0 & \\ 24(b+1)^{2}-25(b+1)(a-1)+84=0 & \end{matrix}\right.$

Đặt

$\left\{\begin{matrix} x=a-1 & \\ y=b+1 & \end{matrix}\right.$

Ta có
$\left\{\begin{matrix} x^{2}-y^{2}-7=0 & \\ 24y^{2}-25xy+84=0 ,,,,(*) & \end{matrix}\right.$
$\Leftrightarrow $\left\{\begin{matrix} y^{2}x^{2}-y^{4}-7y^2=0& \\ (24y^{2}+84)^{2}=(25xy)^{2} & \end{matrix}\right.$$

$\Leftrightarrow $\left\{\begin{matrix} 625x^{2}y^{2}-625y^{4}-4375y^2=0 & \\ 576y^{4}+7056+4032y^{2}=625x^{2}y^{2} & \end{matrix}\right.$$
$\Leftrightarrow $\left\{\begin{matrix} 625y^{4}+4375y^2=625x^{2}y^{2} ,,,,,(7) & \\ 576y^{4}+7056+4032y^{2}=625x^{2}y^{2},,,,, (8) & \end{matrix}\right.$$

Trừ (7) cho (8), ta có
$49y^{4}+343y^{2}-7056=0$
Giải phương trình ta được
$y^{2}=9$ và $y^{2}=-16$ (loại)
$\Rightarrow y=\pm 3$
Xét y=-3 thay vào (*) ta được $216+75x+84=0\Rightarrow x=-4$
..... $\left\{\begin{matrix} x=-4 & \\ y=-3 & \end{matrix}\right. \Leftrightarrow \left\{\begin{matrix} a=-3 & \\ b=-4 & \end{matrix}\right.$
Xét y=3 thay vào (*) ta được $216-75x+84=0\Rightarrow x=4$
..... $\left\{\begin{matrix} x=4 & \\ y=3 & \end{matrix}\right. \Leftrightarrow \left\{\begin{matrix} a=5 & \\ b=2 & \end{matrix}\right.$

Vậy hệ có 2 nghiệm (5;2) và (-3;-4)

Trong chủ đề: Topic nhận đề PT, BPT, HPT, HBPT

23-08-2012 - 16:28

Đề : Giải hệ phương trình sau
$\left\{\begin{matrix} 23a^{2}+b^{2}=25ab+71a-27b+28 & \\ 24b^{2}+73b = 25ab+25a-133 & \end{matrix}\right.$$\left\{\begin{matrix} 23a^{2}+b^{2}=25ab+71a-27b+28 & \\ 24b^{2}+73b = 25ab+25a-133 (1) & \end{matrix}\right.$$\left\{\begin{matrix} 23a^{2}+b^{2}=25ab+71a-27b+28 & \\ 24b^{2}+73b = 25ab+25a-133 (2) & \end{matrix}\right.$

--------------------------------------------------------------------------


Bài giải:

Hệ đã cho tương đương với
$\left\{\begin{matrix} 23a^{2}+b^{2}-71a+27b+161=25ab+28 & \\ 24b^{2}+73b-25a=25ab+28 \end{matrix}\right.$