Đến nội dung


Chú ý

Nếu các bạn đăng kí thành viên mà không nhận được email kích hoạt thì hãy kiểm tra thùng thư rác (spam). Nếu không biết cách truy cập vào thùng thư rác thì các bạn chịu khó Google hoặc đăng câu hỏi vào mục Hướng dẫn - Trợ giúp để thành viên khác có thể hỗ trợ.


QuylaoKame

Đăng ký: 29-09-2009
Offline Đăng nhập: 11-06-2011 - 21:20
-----

Bài viết của tôi gửi

Trong chủ đề: Bài này làm thế nào đây?

04-01-2010 - 17:30

1)Tìm bộ ba số nguyên dương $(x,y,z)$ thỏa mãn: $(z,y)=(z;3)=1; y \in P$ và $x^3-y^3=z^2$
2)Giả sử x,y là các số nguyên dương sao cho $A= \dfrac{x^2+y^2+6}{xy}$ là số nguyên.CMR A là lập phương đúng.

Bài 1$x^3-y^3=z^2 \Leftrightarrow (x-y)(x^2+xy+y^2)=z^2 \Rightarrow $
hoặc $ \left\{\begin{array}{l}x-y=1\\x^2+xy+y^2=z^2\end{array}\right.$
Hoặc $ \left\{\begin{array}{l}x-y=z\\x^2+xy+y^2=z\end{array}\right.$ (do $x-y \leq x^2+xy+y^2$)
(Bài này thi HSG tỉnh Vĩnh Phúc năm nay )
Bài 2 Trong quyển của Thầy Phạm Minh Phương như bạn nói, tương tự IMO 1982 thì phải?

Trong chủ đề: pt hàm tst A0

04-01-2010 - 16:42

Tìm hàm $f:R->R$ sao cho:
$f( x^{2})= [f(x)]^{2}$
$f(x+1)=f(x)+1$

Bài này trong Functional equations and how to solve them
Download tại đây

Trong chủ đề: Kì thi chọn Học sinh giỏi tỉnh môn Toán THPT tỉnh Phú Thọ

01-01-2010 - 15:23

Nếu dễ thì làm cũng không mệt lắm đau anh ạ, để mọi người xem thôi!
Thay mặt phongthan, xin phép đưa ra lời giải để mọi người xem luôn:
Bài 1: Như bạn Pirates, đặt ẩn đưa về $(2x-a)(b-1)=0$
Bài 2: Phép thế xem ra không hiệu quả, có thể đặt $x=ky$hoặc giải như sau:
Hệ tương đương:
$ \left\{ \begin{matrix} x^2+y^2=2x+y \\ 2y+2x=3x^2 \end{matrix} \right.$ rồi nhân vế với vế, đưa về phương trình đẳng cấp thuần nhất bậc 3
Sau đó xét $y=0 \Rightarrow x=0$
nếu $y \neq 0 $thì chia 2 vế phương trình cho $y^3$, đặt ẩn phụ mới $\dfrac{x}{y}$, đến đây không còn gì phải nói!
Bài 3:
1, Sử dụng định lí Te-let, $N$ là tâm vị tự ngoài 2 đường tròn
2, $I$ thuộc đường tròn đường kính $O_1O_2$
3, Có khá nhiều cách giải, đơn giản là tính toán dùng tam giác đồng dạng hoặc $(O_1O_2MN)$ là Hàng điểm điều hòa, hoặc sử dụng Phương tích...đều được!!
Có thể làm mạnh hơn một chút kết quả này, đó là $NE, NF$ là tiếp tuyến với cả 3 đường tròn, chứng minh cũng không có gì phức tạp, mọi người xem thử!
Bài 4
Cộng thêm 1 vào 2 vế rồi xét dãy nghịch đảo là xong, bài toán thuộc dạng cơ bản
Bài 5: Đã có lời giải ở trên
Bài 6: Hướng giải như Apollo_1994, nhưng đáp số đúng phải là $ \dfrac{10^{2010}-1}{2} $, lí luận như sau: Với mỗi số a cần tìm luôn có một số b nữa coi là "cái bóng" của a cũng thỏa mãn bài toán, mà $a+b=999...99$ nên a luôn khác b, do đó số các số lập được luôn là số chẵn.
Gọi $x_1, x_2,... x_{2k}$ là các số lập được, khi đó $\dfrac{x_1, x_2,... x_{2k}}{2k}= \dfrac{999..99k}{2k}$ xong!

Trong chủ đề: Kì thi chọn Học sinh giỏi tỉnh môn Toán THPT tỉnh Phú Thọ

29-12-2009 - 16:51

Bài này đặt ẩn phụ: $\sqrt{x + 3} = a , \sqrt{x - 1} = b$

Chỉ dừng lại ở Bài 1Bài BDT thôi sao mọi người. Dân 11 vượt cấp, 12 các tỉnh đâu hết rồi nhỉ :D
Cả các men của diendantoanhoc nữa chứ???

Trong chủ đề: Kì thi chọn Học sinh giỏi tỉnh môn Toán THPT tỉnh Phú Thọ

25-12-2009 - 15:24

Chính xác đấy! Thi HSG ở các tỉnh chỉ dành cho lớp 12 thôi Janienguyen! Chắc ở HN nên bạn cũng chưa rõ điều này. :)
Bài BDT có khá nhiều cách giải, Schwarz cũng là một cách hay, ngoài ra có thể dùng Schur hoặc AM-GM!
Dùng AM-GM như sau:
$<=>\sum \dfrac{4(x^3+y^3)}{4xy+36} \ge \sum \dfrac{(x+y)^3}{(x+y)^2+36}=\sum x+y-\sum \dfrac{36(x+y)}{(x+y)^2+36}=18-\sum \dfrac{36(x+y)}{(x+y)^2+36} \ge 18-3.3=9$
Hoặc Schur bậc 3 $a^3+b^3+c^3 \geq a^2(b+c)+b^2(c+a)+c^2(a+b)$ sau đó cho một biến bằng $3$ rồi đánh giá tiếp là ổn!
Còn mấy bài khác, mọi người thử sức!!!