Đến nội dung


Chú ý

Nếu bạn gặp lỗi trong quá trinh đăng ký thành viên, hoặc đã đăng ký thành công nhưng không nhận được email kích hoạt, hãy thực hiện những bước sau:

  • Đăng nhập với tên và mật khẩu bạn đã dùng kể đăng ký. Dù bị lỗi nhưng hệ thống đã lưu thông tin của bạn vào cơ sở dữ liệu, nên có thể đăng nhập được.
  • Sau khi đăng nhập, phía góc trên bên phải màn hình sẽ có nút "Gửi lại mã kích hoạt", bạn nhấn vào nút đó để yêu cầu gửi mã kích hoạt mới qua email.
Nếu bạn đã quên mật khẩu thì lúc đăng nhập hãy nhấn vào nút "Tôi đã quên mật khẩu" để hệ thống gửi mật khẩu mới cho bạn, sau đó làm theo hai bước trên để kích hoạt tài khoản. Lưu ý sau khi đăng nhập được bạn nên thay mật khẩu mới.

Nếu vẫn không đăng nhập được, hoặc gặp lỗi "Không có yêu cầu xác nhận đang chờ giải quyết cho thành viên đó", bạn hãy gửi email đến [email protected] để được hỗ trợ.
---
Do sự cố ngoài ý muốn, tất cả bài viết và thành viên đăng kí sau ngày 08/08/2019 đều không thể được khôi phục. Những thành viên nào tham gia diễn đàn sau ngày này xin vui lòng đăng kí lại tài khoản. Ban Quản Trị rất mong các bạn thông cảm. Mọi câu hỏi hay thắc mắc các bạn có thể đăng vào mục Hướng dẫn - Trợ giúp để được hỗ trợ. Ngoài ra nếu các bạn thấy diễn đàn bị lỗi thì xin hãy thông báo cho BQT trong chủ đề Báo lỗi diễn đàn. Cảm ơn các bạn.

Ban Quản Trị.


QuylaoKame

Đăng ký: 29-09-2009
Offline Đăng nhập: 11-06-2011 - 21:20
-----

Chủ đề của tôi gửi

Tính chất nghiệm

07-01-2010 - 17:10

Cho $ a\neq 0$ sao cho phương trình $ax^n+x+1$ có đủ $n$ nghiệm.
Chứng minh rằng phương trình có ít nhất 1 nghiệm $ \in [-2; 2]$

Kì thi chọn Học sinh giỏi tỉnh môn Toán THPT tỉnh Phú Thọ

24-12-2009 - 18:46

Câu 1: Giải phương trình:
$\sqrt{x+3}+2x\sqrt{x-1}=2x+\sqrt{x^2+2x-3}$
Câu 2: Giải hệ phương trình:
$ \left\{ \begin{matrix} x^2+y^2-2x-y=0 \\ 2y=3x^2-2x \end{matrix} \right.$
Câu 3: Cho hai đường tròn $(O_1,R_1)$ và $(O_2,R_2)$ trong đó $R_1<R_2$ và tiếp xúc ngoài tại $M$.
Điểm $A$ di động trên đường tròn $(O_1,R_1)$, điểm $B$ di động trên đường tròn $(O_2,R_2)$ sao cho $MA$ vuông góc với $MB$.
1) Chứng minh đường thẳng $AB$ luôn đi qua điểm cố định $N.$
2) Chứng minh trung điểm $I$ của đoạn $AB$ luôn thuộc 1 đường tròn cố định $C$
3) Đường thẳng vuông góc với $O_1O_2$ tại $M$ cắt đường tròn $C$ tại $E,F$.
Chứng minh $NE, NF$ là các tiếp tuyến của $C$
Câu 4: Cho dãy số $(U_n)$:$ \left\{ \begin{matrix} U_1=5 \\ U_{n+1}=\dfrac{5U_n+4}{U_n+2} \end{matrix} ,n\in N* \right.$
1) Chứng minh rằng $U_n>4 , \foral n\in N*$
2) Tìm số hạng tổng quát của $U_n$
Câu 5: Cho x,y,z là các số thực dương thỏa mãn $x+y+z=9$.
Chứng minh rằng: $\dfrac{x^3+y^3}{xy+9}+\dfrac{y^3+z^3}{yz+9}+\dfrac{z^3+x^3}{zx+9} \geq 9 $
Câu 6: Tính trung bình cộng của tất cả các số tự nhiên $n$ thỏa mãn $n$ có $2010$ chữ số mà các chữ số đều thuộc tập ${1,2,3,4,5,6,7,8}$ đồng thời n chia hết cho $99999$

Đáp án VMO 2009

09-10-2009 - 19:50

File gửi kèm  Dap_an_VMO2009.pdf   310.16K   1664 Số lần tải
Đáp án này bị chữ hơi mờ. Mong mọi người thông cảm!

mop 97

09-10-2009 - 19:30

Tìm n để $2^{n-1}\equiv-1$ (mod n)