Đến nội dung


Chú ý

Nếu các bạn đăng kí thành viên mà không nhận được email kích hoạt thì hãy kiểm tra thùng thư rác (spam). Nếu không biết cách truy cập vào thùng thư rác thì các bạn chịu khó Google hoặc đăng câu hỏi vào mục Hướng dẫn - Trợ giúp để thành viên khác có thể hỗ trợ.


DBSK

Đăng ký: 22-02-2011
Offline Đăng nhập: 24-08-2012 - 01:14
*****

#349301 Chứng minh $\sum \sqrt{a} \le \sqrt{...

Gửi bởi DBSK trong 24-08-2012 - 01:16

Dùng p,q,r chắc ngon!
--------------------------------------------------------------------------------------------------------------------------------------------------------
Lần sau bạn trình bày hẳn ra nhé:) Thân!


#347855 Tìm min của: $P=\sum \frac{1}{ab+2c^2+2c}...

Gửi bởi DBSK trong 18-08-2012 - 14:11

Cho các số thực dương $a,b,c$ thỏa mãn $a+b+c=1$
Tìm min của:
$P=\sum \frac{1}{ab+2c^2+2c}$


#291305 CMR: $\dfrac{a^2+b^2c}{b+c}+\dfrac{b^2+c^2a}{c+a}+\dfrac{...

Gửi bởi DBSK trong 31-12-2011 - 22:04

Không thể giả sử $a \ge b \ge c$ do thiếu tính đối xứng của bất đẳng thức.


Không thể giả sử $a \ge b \ge c$ do thiếu tính đối xứng của bất đẳng thức.

Nếu vậy thì làm kiểu này:

Sử dụng giải thiết $a+b+c=1$ và BĐT $Cauchy-Schwarz$ta có:
$\sum\dfrac{a^2}{b+c}=\sum\dfrac{a^2(a+b+c)}{b+c}=\sum\dfrac{a^3}{b+c}+\sum{a^2}$
$\ge \dfrac{(a^2+b^2+c^2)^2}{2(ab+bc+ca)}+a^2+b^2+c^2\ge \dfrac{3(a^2+b^2+c^2)}{2}$
Và $\sum\dfrac{b^2c}{b+c}=\sum\dfrac{b^2c^2}{bc+c^2}\ge \dfrac{(ab+bc+ca)^2}{\sum{ab}+\sum{a^2}}$
Khi đó, đặt $t=ab+bc+ca (0<t\le \dfrac{1}{3})$ ta suy ra được:$VT\ge \dfrac{t^2}{1-t}-3t+\dfrac{3}{2}$
Xét $f(t)=\dfrac{t^2}{1-t}-3t+\dfrac{3}{2}$ trên $(0;\dfrac{1}{3}]$
$f'(t)<0 \Rightarrow f(t)\ge f(\dfrac{1}{3})=\dfrac{2}{3}$
$\Rightarrow VT\ge \dfrac{2}{3}$
Điều phải chứng minh.[/b]


#287637 SIÊU KINH ĐIỂN Real Madrid vs Barcelona 10/12/2011

Gửi bởi DBSK trong 11-12-2011 - 01:59

Có em đây em là fan của ra cũng như cr7 mong năm nay anh ấy có thể đạt quả bóng vàng!


#286295 $ \dfrac{1}{a+2}+\dfrac{1}{b+2}+\dfrac{1}{c+2}\geq 1...

Gửi bởi DBSK trong 02-12-2011 - 21:01

Cho $ \dfrac{1}{a+2}+\dfrac{1}{b+2}+\dfrac{1}{c+2}\geq 1$
Tìm max $abc$


Bạn hãy đặt tiêu đề rõ ràng bằng Latex, không nên đặt là: ... đây, giúp ... với, một bài ... hay, ...



Ta có:
$\dfrac{1}{a+2} \geq (\dfrac{1}{2}-\dfrac{1}{b+2})+(\dfrac{1}{2}-\dfrac{1}{c+2})$
$\Leftrightarrow \dfrac{1}{a+2} \geq \dfrac{b}{2(b+2)} +\dfrac{c}{2(c+2)} \geq 2\sqrt{\dfrac{b}{2(b+2)} .\dfrac{c}{2(c+2)}} $
Lamf tương tự như vậy rồi nhân các BDT lại ta được ĐPCM!


#284358 Áp dụng Bunhia Cốpxki

Gửi bởi DBSK trong 20-11-2011 - 20:44

1. Cho a,b,c >0. Min, Max của
S= $\dfrac{a}{b+c}+ \dfrac{4b}{a+c}+ \dfrac{9c}{a+b}$

2.Cho a,b,c >0. CMR:
$\dfrac{a}{1+a}+ \dfrac{2b}{2+b}+ \dfrac{3c}{3+c} \leq \dfrac{6 (a+b+c)}{6+a+b+c}$

3.Cho a,b,c,d >0 thỏa mãn: ab+bc+cd+da=3
Min S= $\dfrac{a^3}{b+c+d}+ \dfrac{b^3}{c+d+a}+ \dfrac{c^3}{d+a+b}$

4.Cho x,y,z thỏa mãn x+2y-2z=1.
Tìm Min S= $x^2+y^2+z^2$


1. Cho a,b,c >0. Min, Max của
S= $\dfrac{a}{b+c}+ \dfrac{4b}{a+c}+ \dfrac{9c}{a+b}$

2.Cho a,b,c >0. CMR:
$\dfrac{a}{1+a}+ \dfrac{2b}{2+b}+ \dfrac{3c}{3+c} \leq \dfrac{6 (a+b+c)}{6+a+b+c}$

3.Cho a,b,c,d >0 thỏa mãn: ab+bc+cd+da=3
Min S= $\dfrac{a^3}{b+c+d}+ \dfrac{b^3}{c+d+a}+ \dfrac{c^3}{d+a+b}$

4.Cho x,y,z thỏa mãn x+2y-2z=1.
Tìm Min S= $x^2+y^2+z^2$

Bài 2:
Ta có:
$\dfrac{a}{1+a}+ \dfrac{2b}{2+b}+ \dfrac{3c}{3+c} \leq \dfrac{6 (a+b+c)}{6+a+b+c}$
$\Leftrightarrow 1-\dfrac{a}{1+a}+ 2-\dfrac{2b}{2+b}+ 3-\dfrac{3c}{3+c} \geq 6-\dfrac{6 (a+b+c)}{6+a+b+c}$
$\Leftrightarrow {1}{1+a}+ \dfrac{4}{2+b}+ \dfrac{9}{3+c} \geq \dfrac{36}{6+a+b+c}$
Đúng theo C-S!
Bài 4:
Chắc bạn chép đề thiếu!
S= $\dfrac{a^3}{b+c+d}+ \dfrac{b^3}{c+d+a}+ \dfrac{c^3}{d+a+b} + \dfrac{d^3}{a+b+c}$


#284276 Bất đẳng thức hay!

Gửi bởi DBSK trong 20-11-2011 - 10:36

Bài 1:Tìm giá trị nhỏ nhất của biểu thức T =(x + y)(x + z) trong đó x, y, z là 3 số dương thay đổi thỏa mãn: (x + y + z)xyz =1

Bài 2: Cho a, b, c là các số thực thỏa mãn:
$\large \left\{\begin{matrix} a\geq 0, b\geqslant 0\\ a+2b-4c+2=0 \\ 2a-b+7c-11=0 \end{matrix}\right.$
Tìm giá trị nhỏ nhất của biểu thức Q= 6a + 7b +2006c

Bài 3: Cho a,b là 2 số thực thỏa mãn điều kiện:
$\large a^{2}- 3ab+ 2b^{2}+a-b= a^{2}- 2ab+ b^{2}-5a+7b= 0$
CMR: ab - 12a +15b =0

Bài 4: Cho các số thực x,y thỏa mãn: $\large x^{2}+y^{2}=6$. Tìm giá trị nhỏ nhất và giá trị lớn nhất của P= x - $\large \sqrt{5}y$

Bài 5:Cho ba số dương thỏa mãn: a + b + c=1
CMR: $\large \dfrac{1}{ac}+\dfrac{1}{bc}\geqslant 16$

Bài 6: Cho x,y là các số dương thỏa mãn: $\large x + \dfrac{1}{y}\leqslant 1$
Tìm giá trị nhỏ nhất của A= $\large \dfrac{x}{y}+\dfrac{y}{x}$

Bài 1:
Ta có:
$(x+y)(x+z)=x(x+y+z)+yz = x(x+y+z) + \frac{1}{x(x+y+z))} \geq 2$
Bài 5:
Ta có:
$\large \dfrac{1}{ac}+\dfrac{1}{bc} =\frac{1}{c}( \dfrac{1}{a}+\dfrac{1}{b}) \geq \frac{4}{c(a+b)} \geq \frac{4}{\frac{(a+b+c)^2}{4}} = 16 $


#284021 Đề thi chọn học sinh giỏi lớp 10 THPT chuyên KHTN Hà Nội(8\10\2011).

Gửi bởi DBSK trong 18-11-2011 - 19:13

Đây nè bạn:

Như thế này.
Đặt $a = \dfrac{1}{x};b = \dfrac{1}{y};c = \dfrac{1}{z}$. Khi đó từ giả thiết ta có: $ab + bc + ca = 1$
và $A = \dfrac{{2a}}{{\sqrt {1 + {a^2}} }} + \dfrac{b}{{\sqrt {1 + {b^2}} }} + \dfrac{c}{{\sqrt {1 + {c^2}} }}$
Do $ab + bc + ca = 1$ nên $1 + {a^2} = ab + bc + ca + {a^2} = \left( {a + b} \right)\left( {a + c} \right)$. Với các đẳng thức tương tự, ta có:
$A = \dfrac{{2a}}{{\sqrt {\left( {a + b} \right)\left( {a + c} \right)} }} + \dfrac{{2b}}{{\sqrt {4\left( {b + c} \right)\left( {b + a} \right)} }} + \dfrac{{2c}}{{\sqrt {4\left( {c + a} \right)\left( {c + b} \right)} }}$
$\le a\left( {\dfrac{1}{{a + b}} + \dfrac{1}{{a + c}}} \right) + b\left( {\dfrac{1}{{4\left( {b + c} \right)}} + \dfrac{1}{{a + b}}} \right) + c\left( {\dfrac{1}{{c + a}} + \dfrac{1}{{4\left( {c + b} \right)}}} \right) = \dfrac{9}{4}$ (áp dụng AM-GM)
Dấu "=" xảy ra $ \Leftrightarrow b = c = \dfrac{1}{7}a \Leftrightarrow y = z = 7x = \sqrt {15} $
Vậy $\max A = \dfrac{9}{4}$ đạt được khi $y = z = 7x = \sqrt {15} $.




#282709 Tính $\sum_{n=1}^{30} \dfrac{n^n}{(2n-1)!}$

Gửi bởi DBSK trong 11-11-2011 - 11:11

$\dfrac{1^1}{1!}+\dfrac{2^2}{3!}+\dfrac{3^3}{5!}+....+\dfrac{29^{29}}{57!}+\dfrac{30^{30}}{59!} $
  • MIM yêu thích


#282505 Cho 3 số a, b, c thỏa mãn: a+b+c = 1. Chứng minh: $a+2b+c\geq 4(1-a...

Gửi bởi DBSK trong 10-11-2011 - 09:29

$a+2b+c\geq 4(1-a)(1-b)(1-c)$

Ta có:
$a+2b+c\geq 4(1-a)(1-b)(1-c)$
$\Leftrightarrow \dfrac{a+2b+c}{(1-a)(1-c)} \geq 4(1-b)$
$\Leftrightarrow \dfrac{1}{1-a}+\dfrac{1}{1-c} \geq 4(1-b)$
Ta lại có:
$\dfrac{1}{1-a}+\dfrac{1}{1-c} \geq \dfrac{4}{1+b} $
Mà:
$\dfrac{4}{1+b} \geq 4(1-b)$ (Biến đổi tương đương)
Suy ra Q.E.D


#282157 Topic về bất đẳng thức

Gửi bởi DBSK trong 08-11-2011 - 09:33

[

Bài 54 Cho $x;\,y;\,z$ là các số thực dương thỏa mãn $xy + yz + zx = 3xyz$, chứng minh rằng:
$\dfrac{y^2}{xy^2+2z^2}+\dfrac{x^2}{zx^2+2y^2}+ \dfrac{z^2}{yz^2+2x^2}\ge 1$
Bài 56 Cho ba số thực dương $a;\,b;\,c$ có $abc=1$]. Tìm giá trị nhỏ nhất của
$P=\dfrac{a^2b}{a+b}+\dfrac{b^2c}{b+c}+\dfrac{c^2a}{c+a}$

Bài 54:
Từ giả thiết $\rightarrow \dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=3$
Đặt $\dfrac{1}{x}=a,\dfrac{1}{y}=b,\dfrac{1}{z}=c \Rightarrow a+b+c=3$
BDT$ \Rightarrow \sum \dfrac{a^2}{a+2b^2}\ge 1$
$\Rightarrow \sum (a-\dfrac{2ab^2}{a+2b^2})\ge 1$
$\Leftrightarrow 3-\sum\dfrac{2ab^2}{a+2b^2}\ge 1$
Ta có:

$\dfrac{2ab^2}{a+2b^2}\le^{AM-GM} \dfrac{2}{3}\sqrt[3]{a^2b^2}$

Tương tự ta có:

$VT\ge 3-\dfrac{2}{3}(\sum\sqrt[3]{a^2b^2})$

Mà:

$\sum\sqrt[3]{a^2b^2}\le \sum\dfrac{ab+ab+1}{3}=\dfrac{2}{3}(ab+bc+ca)+1\le 3$
Vậy $VT \ge 3-2=1 (dpcm)$
Bài 56:
$ abc=1\to a=\dfrac{x}{y},b=\dfrac{y}{z},c=\dfrac{z}{x}$

${{x}^{4}}+{{y}^{4}}+{{z}^{4}}+3\left( {{x}^{2}}{{y}^{2}}+{{y}^{2}}{{z}^{2}}+{{z}^{2}}{{x}^{2}} \right)$
$={{\left( {{x}^{2}}+{{y}^{2}}+{{z}^{2}} \right)}^{2}}+\left( {{x}^{2}}{{y}^{2}}+{{y}^{2}}{{z}^{2}}+{{z}^{2}}{{x}^{2}} \right)\le \dfrac{4}{3}{{\left( {{x}^{2}}+{{y}^{2}}+{{z}^{2}} \right)}^{2}}$

$ P=\sum\limits_{cyc}{\dfrac{{{a}^{2}}b}{a+b}} = \sum\limits_{cyc}{\dfrac{\dfrac{{{x}^{2}}}{{{y}^{2}}}.\dfrac{y}{z}}{\dfrac{x}{y}+\dfrac{y}{z}}} = \sum\limits_{cyc}{\dfrac{2{{x}^{2}}}{2xz+2{{y}^{2}}}} \overset{AM-GM}{ \ge }\,2.\sum\limits_{cyc}{\dfrac{{{x}^{2}}}{{{x}^{2}}+{{z}^{2}}+2{{y}^{2}}}}$
$\overset{Cauchy-Schwarz}{ \ge }\,2.\dfrac{{{\left( {{x}^{2}}+{{y}^{2}}+{{z}^{2}} \right)}^{2}}}{{{x}^{4}}+{{y}^{4}}+{{z}^{4}} + 3\left( {{x}^{2}}{{y}^{2}}+{{y}^{2}}{{z}^{2}}+{{z}^{2}}{{x}^{2}} \right)}\ge 2.\dfrac{3}{4}=\dfrac{3}{2}$

Từ đó: $P=\sum\limits_{cyc}{\dfrac{{{a}^{2}}b}{a+b}}\ge \dfrac{3}{2}$