Đến nội dung


Ispectorgadget

Đăng ký: 26-02-2011
Offline Đăng nhập: 09-12-2017 - 17:04
****-

Bài viết của tôi gửi

Trong chủ đề: Cập nhật list Những bài toán trong tuần (400-500)

16-11-2017 - 17:10

$\boxed{\text{Bài toán 430}}$

Tìm đa thức hệ số nguyên $P(x)$ sao cho với mọi số nguyên dương $n$ ta đều có $P(n)$ là ước của $2^n-1$.

 

$\boxed{\text{Bài toán 431}}$

Cho trước số nguyên dương $n $ . Xét tập hợp $ \mathcal{M} \ = \ \{ 1 ; 2 ; ....; n^2 + n +1 \} $ .

Gọi $ \mathcal{F}$ là $ 1$ tập hợp chứa 1 số tập con $ \mathcal{X} $ của $ \mathcal{M} $ ,

, nhửng tập con này thỏa mãn $ | \mathcal{X} | \ \ > n^2$ . Biết rằng với mỗi số nguyên dương $x \ \in \ \mathcal{M} $ , có nhiều hơn $n^2 $ tập con $ \mathcal{X}_i $ thỏa mãn : $x \ \in \ \mathcal{X}_i $

Chứng minh rằng tồn tại $ 2$ tập hợp$ \mathcal{A} ; \mathcal{B} \ \in \ \mathcal{F} $ sao cho :

$ \mathcal{A} \bigcup \mathcal{B} = \mathcal{M} $

 

$\boxed{\text{Bài toán 432}}$

Cho vài (hoặc tất cả) các số $a_{1},a_{2},a_{3},...,a_{n}$ bằng +1 và các số còn lại của chúng bằng -1.Chứng tỏ rằng :

$$2\sin (a_{1}+\frac{a_{1}a_{2}}{2}+\frac{a_{1}a_{2}a_{3}}{2^{2}}+...+\frac{a_{1}a_{2}a_{3}...a_{n}}{2^{n-1}}).45=a_{1}\sqrt{2+a_{2}\sqrt{2+a_{3}\sqrt{2+...+a_{n}{\sqrt{2}}}}}$$


Trong chủ đề: Cập nhật list Những bài toán trong tuần (400-500)

24-08-2017 - 17:48

$\boxed{\text{Bài toán 419}}$

Cho $p\in \mathbb{R}^+$ và $k\in \mathbb{R}^+$. Giả sử đa thức $F(x)=x^4+a_3x^3+a_2x^2+a_1x+k^4$ với các hệ số thực có 4 nghiệm âm. Chứng minh $$F(p)\ge (p+k)^4.$$

$\boxed{\text{Bài toán 420}}$

Cho $n$ số nguyên dương $1\leq a_1<a_2<....<a_n<2n$ thỏa mãn $a_i \not | \ a_j \forall i\neq j$

Chứng minh rằng $a_1\geq 2^{[log_{3}(2n)]}$   (Với [ ] là kí hiệu phần nguyên)

 

$\boxed{\text{Bài toán 421}}$

Cho $ABC$ là một tam giác và $M,N,P$ các điểm nằm trên cạnh $BC,CA,AB$. Lấy $\Delta_A, \Delta_B, \Delta_C$ là các đường thẳng đi qua $M,N,P$ và $\widehat{BM\Delta_A}=\alpha, \widehat{CN\Delta_B}=\beta, \widehat{AN\Delta_C}=\theta$ (các góc nằm trong tam giác) sao cho $\alpha+\beta+\theta=270^{o}$. Tìm điều kiện cần và đủ của mệnh đề sau:

"$\Delta_A, \Delta_B, \Delta_C$ đồng quy".

 

 

$\boxed{\text{Bài toán 422}}$

Cho dãy $X_{n}$ thỏa mãn $X_{1}=1$ và $X_{n+1}= \sin X_{n}$

Chứng minh rằng $\lim \sqrt{n}.X_{n}=1$

 

$\boxed{\text{Bài toán 423}}$

Cho $n$ là số nguyên dương lẻ và $u$ là một ước nguyên dương lẻ của $3^n+1$

Chứng minh $u-1$ chia hết cho $3$

 

$\boxed{\text{Bài toán 424}}$

Xét dãy đa thức $P_1(x)=4x^{3}-3x;P_n(x)=P_1(P_{n-1}(x)) \forall n \geq 2$.

Chứng minh $P_n(x)=x$ có đúng $3^{n}$ nghiệm thực phân biệt $\forall n \in \mathbb N *$

 

$\boxed{\text{Bài toán 425}}$

Cho dãy $\{x_n\}_{n\in \mathbb{N}}$ với $x_0\ge 0$ và xác định bởi $\sqrt{x_n}=\frac{x_n-x_{n+1}+1}{x_{n+1}-x_n}$. Tính $\lim\limits_{n\to \infty} \frac{x_n^6}{n^4}.$

 

$\boxed{\text{Bài toán 426}}$

 

Cho $a,b,c$ là các số thực dương thỏa mãn $abc=1$.

Chứng minh rằng:

$$\left ( \frac{2}{\sqrt{\frac{1+a^{2}}{2}}+\frac{2a}{1+a}} \right )^{\frac{1}{3}}+\left ( \frac{2}{\sqrt{\frac{1+b^{2}}{2}}+\frac{2b}{1+b}} \right )^{\frac{1}{3}}+\left ( \frac{2}{\sqrt{\frac{1+c^{2}}{2}}+\frac{2c}{1+c}} \right )^{\frac{1}{3}}\leq 3$$

 

$\boxed{\text{Bài toán 427}}$

Cho 2 đường tròn $(O;R)$ và $(O';R')$ tiếp xúc ngoài, trong đó $R<R'$. Gọi $d$ là tiếp tuyến chung ngoài của 2 đường tròn. Gọi $A,B$ lần lượt là tiếp điểm của $(O),(O')$ với $d$. Trên tia $BO'$ lấy $F$ sao cho $BF=\sqrt{R.R'}$.

 

Từ $F$ kẻ đường thẳng song song $AB$ cắt $OO'$ tại $K$. Hạ $KH \perp AB$ ($H\in AB$). Trên tia $KH$ lấy điểm $M$ sao cho $HM=4\sqrt{R.R'}$.

 

Vẽ đường tròn ngoại tiếp $\triangle ABM$. Đường tròn này cắt $HK$ tại $I$.

 

Chứng minh rằng $I$ là tâm đường tròn tiếp xúc với $(O),(O')$ và $AB$.

 

$\boxed{\text{Bài toán 428}}$

Cho $x,y,z>0$ thoả mãn $x+y+z+xyz=4$,chứng minh rằng:

$$\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\geqslant \left ( \frac{17\sqrt{17}-47}{8} \right )(x+y+z)+\frac{165-51\sqrt{17}}{8}$$

 

$\boxed{\text{Bài toán 429}}$

 

Tính $$\lim_{x \to 0} \frac{1}{\sin^4 x}\left(\sin\left(\frac{x}{1+x}\right)-\frac{\sin x}{1+ \sin x}\right)$$


Trong chủ đề: Cập nhật list Những bài toán trong tuần (400-500)

18-07-2017 - 17:42

$\boxed{\text{Bài toán 412}}$

Cho các số thực $a_{1}\geq a_{2}\geq ...\geq a_{100}\geq 0$

Thỏa mãn $\left\{ \begin{array}{l}a_{1}\geq a_{2}\geq ...\geq a_{100}\geq 0 \\ a_{1}+a_{2}\leq 2002\\a_{3}+a_{4}+...+a_{100}\leq 2002  \end{array} \right.$

Tìm giá trị lớn nhất của biểu thức : $S=a{_{1}}^{2}+a{_{2}}^{2}+...+a{_{100}}^{2}$.Tìm các số $a_{1},a_{2},...a_{100}$ tương ứng.

 

$\boxed{\text{Bài toán 413}}$

Cho tam giác $ABC$. Chứng minh luôn tồn tại một tam giác đều có các trung tuyến đi qua các đỉnh tam giác $ABC$.

 

 

$\boxed{\text{Bài toán 414}}$

Gọi tổng của một tập hợp là tổng các phần tử của tập hợp đó. Gọi S là tập các số nguyên dương không vượt quá 15. Giả sử rằng không có 2 tập con nào của S có tổng bằng nhau. Tìm GTLN của tổng S?

 

$\boxed{\text{Bài toán 415}}$

Cho dãy số thực $x_{n}$ được xác định bởi: $x_{0}=1,x_{n+1}=2+\sqrt{x_{n}}-2\sqrt{1+\sqrt{x_{n}}}\forall n\epsilon N$

Ta xác định dãy $y_{n}$ bởi công thức $y_{n}=\sum_{i=1}^{n}x_{i}.2^{i},\forall n\epsilon N^{*}$. Tìm công thức tổng quát của dãy $y_{n}$

 

 

$\boxed{\text{Bài toán 416}}$

Cho đa giác lồi $A_{1}A_{2}...A_{n}$, O là tâm tỉ cự hệ điểm $(A_{1};A_{2};...;A_{n})$ với hệ số (1;1;...;1). Đặt $d=OA_{1}+OA_{2}+...+OA_{n}$; p là chu vi đa giác.

CMR: 

+) Nếu n chẵn thì $\frac{4}{n}d\geq p$

+) Nếu n lẻ thì $p\geq \frac{4nd}{n-1}$

 

$\boxed{\text{Bài toán 417}}$

Cho đường tròn (O;13) và hai dây cung AB, CD cố định ko cắt nhau. Xét điểm I trên đoạn CD. Cho AI, BI cắt (O) tại E, F. AF, BE cắt CD tại M, N. BIết ID = 10, IN = 6 và $3CM^{2}+5CM=MI^{2}$. Tính độ dài dây CD.

 

$\boxed{\text{Bài toán 418}}$

Cho $a_i\ge 1; i=1,2,...,n$

Chứng minh rằng :
$$\prod_{i=1}^{n} \left (a_i+1\right ) \ge \dfrac{2^n}{n+1}\left [\left (\sum_{i=1}^{n} a_i\right ) +1\right ]$$


Trong chủ đề: Cập nhật list Những bài toán trong tuần (400-500)

28-05-2017 - 23:44

Khảo sát sự hội tụ của dãy số $x_n$ với
$$\begin{cases}x_0 \geq 0 \\ x_{n+1}=\frac{6}{2+x_n^2} \end{cases} \ \ \ n \geq 0$$
 
Cho $P(x)\in \mathbb{Z}[x], \text{deg}P\geq 2$.

CMR: Tồn tại $m\in \mathbb{Z^+}$ để $P(m!)$ là hợp số.

 

$\boxed{\text{Bài toán 407}}$

Cho hai tam giác $ABC$ ($AB=AC$) và $DEF$ ($DE=DF$) trong đó $B$, $C$, $E$, $F$ thẳng hàng, $BC>EF$. Hãy vẽ một đường thẳng song song với $BC$ sao cho hai đoạn thẳng bị hai cạnh bên của mỗi tam giác cắt ra là bằng nhau.

 

$\boxed{\text{Bài toán 408}}$

CMR với mọi $x\in \mathbb{R}$ ta luôn có:$3\leq 2^{\left | \sin x \right |}+2^{\left | \cos x \right |}\leq 2^{\frac{2+\sqrt{2}}{2}}$

 

$\boxed{\text{Bài toán 409}}$

Xét khai triển hàm số sau:

$$f_{k}(x)=1-\frac{x^2}{k}+\frac{x^4}{2!k(k+1)}-\frac{x^6}{3!k(k+1)(k+2)}+....$$
Chứng minh với mỗi số thực $x$,ta có $\lim_{k \to +\infty}f_{k}(x)=1$.

$\boxed{\text{Bài toán 410}}$

Chứng minh: $[kx]+[x+\frac{k}{k+1}]= [kx+x]$ ( $k\epsilon \mathbb{N}$)

 

$\boxed{\text{Bài toán 411}}$

Một tỷ phú có $100$ chiếc xe hơi đắt tiền.Cứ mỗi ngày anh ta chọn ngẫu nhiên một chiếc để sử dụng.

Tính xác suất để trong $100$ ngày liên tiếp có ít nhất $30$ chiếc xe được chọn từ $2$ lần trở lên ?


Trong chủ đề: [Archive] Cập nhật list Những bài toán trong tuần (301-400)

25-11-2016 - 20:07

$\boxed{\text{Bài toán 386}}$

Gọi $S$ là một tập con bất kỳ chứa $k$ phần tử của tập $\{1,2,3,...,24\}.$ Tìm $k$ nhỏ nhất sao cho $S$ luôn chứa ít nhất 2 tập con sao cho mỗi tập con đó chứa 2 phần tử và tổng các phần tử của mỗi tập con bằng nhau.

 

$\boxed{\text{Bài toán 387}}$

Cho tam giác $ABC$ có $AB=c, BC=a, CA=b$. Điểm $D$ nằm ở miền trong tam giác thỏa mãn đồng thời các điều kiện sau:

1) $CD = d$

2) Gọi $\Delta$ là đường thẳng đi qua $D$ và vuông góc với $CD$. Gọi $A'$ là điểm đối xứng của $A$ qua $\Delta$ thì $A', B, C$ thẳng hàng.

 

Hãy tính $DA+DB$ theo $a,b,c,d$

 

$\boxed{\text{Bài toán 388}}$

 

Tìm tất cả các hàm thỏa $f:\mathbb{R}\to \mathbb{R}$
$$f\left( x+\cos \left( ny \right) \right)=f\left( x \right)+n\cos \left( f\left( y \right) \right)$$
Với $n\in {{\mathbb{N}}^{*}}$

 

 

$\boxed{\text{Bài toán 389}}$

 

Cho tứ giác ABCD nội tiếp trong đường tròn tâm O. Một đường tròn tâm I tiếp xúc với đường thẳng AB, CD lần lượt tại N, M. (I) cắt (O) tại 2 điểm H và S. AC, BD cắt MN lần lượt tại Q, P. Chứng minh: P, Q, H, S cùng thuộc 1 đường tròn và đường tròn này tiếp xúc với AC và BD.

 

$\boxed{\text{Bài toán 390}}$

Cho dãy số $(a_n)$ thỏa $\mathop {\lim }\limits_{n \to + \infty } \sum\limits_{k = 0}^n {{a_k} = a \in \mathbb{R}} $. Chứng minh \[\mathop {\lim }\limits_{n \to + \infty } \sum\limits_{k = 0}^n {{a_k}\cos \frac{{k\pi }}{n} = a} \]

 

$\boxed{\text{Bài toán 391}}$

Trong một hộp có 10 tấm thẻ được đánh số 0,1,2,..,9. Lấy ngẫu nhiên bốn thẻ và xếp cạnh nhau theo thứ tự từ trái sang phải. Hỏi có bao nhiêu cách xếp để bốn thẻ xếp thành một số tự nhiên chẵn. 

 

$\boxed{\text{Bài toán 392}}$

Chứng minh PT sau có ít nhất một nghiệm:

$$ \sqrt{5+4\sqrt{9-2\sqrt{x}}}=2\sqrt{13}(13-x)$$

 

$\boxed{\text{Bài toán 393}}$

Một "bàn cờ" kích thước $1\times (m+n)$ ô. Có $n$ quân tốt đứng ở $n$ ô đầu tiên của bàn cờ. Cần phải tịnh tiến $n$ quân tốt đến $n$ ô cuối cùng (mỗi quân tiến $m$ bước). Mỗi bước đi chỉ được phép di chuyển 1 quân tốt bất kỳ tiến 1 ô về phía cuối bàn cờ nhưng không được "dẫm đạp" lên quân tốt khác. Gọi $S(n,m)$ là số cách di chuyển $n$ quân tốt tịnh tiến $m$ bước.

Chứng minh rằng: $$S(n,m)=\frac{1!2!...(n-1)!}{m!(m+1)!...(m+n-1)!}\times(mn)!$$

 

Ví dụ: $S(2,3)=\dfrac{1!}{3!4!}\times (2.3)!=5$

 

$\boxed{\text{Bài toán 394}}$

Cho $a,b >0$ thỏa mãn $a+b=2$ và $n \in \mathbb{N}$ Chứng minh:

$$(ab)^{\frac{n(n+1)}{2}}.(a^n+b^n)\le 2$$

 

$\boxed{\text{Bài toán 394}}$

-Lấy $Q[\sqrt{5}]$ là tập các số biểu diễn được dưới dạng: $x+y\sqrt{5}$ ( Với $x,y$ là các số hữu tỉ )
-Định 2 số $u,v\in Q[\sqrt{5}]$ sao cho: $u^4+v^4=2+\sqrt{5}$

 

$\boxed{\text{Bài toán 395}}$

Tìm tất cả các hàm thỏa $f:\mathbb{R}\to \mathbb{R}$

$$f\left( x+\cos \left( ny \right) \right)=f\left( x \right)+n\cos \left( f\left( y \right) \right)$$
Với $n\in {{\mathbb{N}}^{*}}$

 

$\boxed{\text{Bài toán 396}}$

Cho dãy Fibonaci $F_n$
đặt $P(x)=\left\{(m,n)|1 \leq m \leq n \leq x, (F_m,F_n)=1 \right \}$
Tính $\lim_{x \to \infty} \frac{P(x)}{x^2}$

 

$\boxed{\text{Bài toán 397}}$

Chứng minh dãy số sau đây có giới hạn và tìm giới hạn đó:

$\left\{ \begin{array}{l} u_0 = 2011 \\ u_n = \dfrac{1}{2}\left( {u_{n - 1} + \dfrac{{216}}{{u_{n - 1}^2 }}} \right),\forall n \ge 1 \\ \end{array} \right.$

 

$\boxed{\text{Bài toán 398}}$

Cho đường tròn bán kính $R= 1$. Trên tiếp tuyến tại một điểm $A$ của đường tròn, lấy điểm $T$ với $AT= 1$. Đường thẳng $d$ quay quanh $T$ cắt đường tròn tại $B$ và $C$. Xác định góc nhọn $\alpha$ giữa đương thẳng $d$ và tiếp tuyến $AT$ sao cho $\Delta ABC$ có diện tích lớn nhất.

 

$\boxed{\text{Bài toán 399}}$

Tìm số tự nhiên $n$ thỏa mãn: 

  $a^{n}(b-c)+b^{n}(c-a)+c^{n}(a-b)$ chia hết cho $a^{2}+b^{2}+c^{2}+ab+bc+ca$.

         với $a,b,c$ là các số thực bất kì.

 

$\boxed{\text{Bài toán 400}}$

Cho một góc nhọn $xOy$ nhỏ hơn $45^{o}$ và một đường tròn $(I)$ thuộc miền trong của góc nhọn đó. Hãy dựng điểm $M$ trên tia $Oy$, điểm $N$ trên tia $Ox$ và các điểm $A$, $B$ thuộc $(I)$ sao cho tổng $AM+BN+MN$ nhỏ nhất