Đến nội dung


Ispectorgadget

Đăng ký: 26-02-2011
Offline Đăng nhập: Riêng tư
****-

Bài viết của tôi gửi

Trong chủ đề: [Archive] Cập nhật list Những bài toán trong tuần (301-400)

17-03-2017 - 20:16

$\boxed{\text{Bài toán 398}}$

Cho đường tròn bán kính $R= 1$. Trên tiếp tuyến tại một điểm $A$ của đường tròn, lấy điểm $T$ với $AT= 1$. Đường thẳng $d$ quay quanh $T$ cắt đường tròn tại $B$ và $C$. Xác định góc nhọn $\alpha$ giữa đương thẳng $d$ và tiếp tuyến $AT$ sao cho $\Delta ABC$ có diện tích lớn nhất.

 

$\boxed{\text{Bài toán 399}}$

Tìm số tự nhiên $n$ thỏa mãn: 

  $a^{n}(b-c)+b^{n}(c-a)+c^{n}(a-b)$ chia hết cho $a^{2}+b^{2}+c^{2}+ab+bc+ca$.

         với $a,b,c$ là các số thực bất kì.

 

$\boxed{\text{Bài toán 400}}$

Cho tam giác $ABC$ nội tiếp $(O)$, $I$ là trung điểm cạnh $BC$. Phân giác trong $AD$  ($D$ trên cạnh $BC$),hai điểm $P,Q$ trên cạnh $AD$ thoả mãn $\angle CBP=\angle ABQ$. $M$ là hình chiếu của $Q$ trên $BC$, $N$ đối xứng với $I$ qua $AD$. Chứng minh $MN \perp OP$

 

$\boxed{\text{Bài toán 401}}$

Cho $a_{1}, a_{2},..., a_{n}\in \mathbb{R}$ thỏa mãn:

$a_{1}+a_{2}+...+a_{n}\geq n^{2}$

$a_{1}^{2}+a_{2}^{2}+...+a_{n}^{2}\leq n^{3}+1$

Chứng minh: $n-1\leq a_{k}\leq n+1 \forall 1\leq k\leq n$

 

$\boxed{\text{Bài toán 402}}$

Cho các đường tròn $(O_{1};R_{1});(O_{2};R_{2})$ sao cho tiếp tuyến chung ngoài $M_{1}M_{2}$ vuông góc với tiếp tuyến chung trong $N_{1}N_{2}$ tại A. Gọi tiếp tuyến chung trong thứ hai là $P_{1}P_{2}$ (các tiếp điểm $M_{1};N_{1};P_{1}\in (O_{1})$ và các tiếp điểm $M_{2};N_{2};P_{2}\in (O_{2})$). Tính diện tích $\Delta AP_{1}P_{2}$ theo $R_{1};R_{2}$. 

 

$\boxed{\text{Bài toán 403}}$

 

Cho tam giác $ABC$. Một điểm O nằm trong tam giác thỏa mãn $OA= OB + OC$. Gọi $Y,Z$ lần lượt là điểm chính giữa các cung $AOC$ và $AOB$ của đường tròn ngoại tiếp các tam giác AOC và $AOB$. Chứng minh rằng: $(BOY)$ tiếp xúc với $(COZ)$.

 

$\boxed{\text{Bài toán 404}}$

Cho $a_1;a_2;...;a_n$ là dãy các số nguyên không âm. Với $k=1,2,....,n$,đặt $ m_k =\max_{1\le l\le k}\frac{a_{k-l+1}+a_{k-l+2}+\cdots+a_k}{l}. $

Chứng minh rằng với mỗi $\alpha>0$,số giá trị của $k$ thỏa mãn $m_k>\alpha$ luôn bé hơn $\frac{a_1+a_2+...+a_n}{\alpha}$


Trong chủ đề: [Archive] Cập nhật list Những bài toán trong tuần (301-400)

25-11-2016 - 20:07

$\boxed{\text{Bài toán 386}}$

Gọi $S$ là một tập con bất kỳ chứa $k$ phần tử của tập $\{1,2,3,...,24\}.$ Tìm $k$ nhỏ nhất sao cho $S$ luôn chứa ít nhất 2 tập con sao cho mỗi tập con đó chứa 2 phần tử và tổng các phần tử của mỗi tập con bằng nhau.

 

$\boxed{\text{Bài toán 387}}$

Cho tam giác $ABC$ có $AB=c, BC=a, CA=b$. Điểm $D$ nằm ở miền trong tam giác thỏa mãn đồng thời các điều kiện sau:

1) $CD = d$

2) Gọi $\Delta$ là đường thẳng đi qua $D$ và vuông góc với $CD$. Gọi $A'$ là điểm đối xứng của $A$ qua $\Delta$ thì $A', B, C$ thẳng hàng.

 

Hãy tính $DA+DB$ theo $a,b,c,d$

 

$\boxed{\text{Bài toán 388}}$

 

Tìm tất cả các hàm thỏa $f:\mathbb{R}\to \mathbb{R}$
$$f\left( x+\cos \left( ny \right) \right)=f\left( x \right)+n\cos \left( f\left( y \right) \right)$$
Với $n\in {{\mathbb{N}}^{*}}$

 

 

$\boxed{\text{Bài toán 389}}$

 

Cho tứ giác ABCD nội tiếp trong đường tròn tâm O. Một đường tròn tâm I tiếp xúc với đường thẳng AB, CD lần lượt tại N, M. (I) cắt (O) tại 2 điểm H và S. AC, BD cắt MN lần lượt tại Q, P. Chứng minh: P, Q, H, S cùng thuộc 1 đường tròn và đường tròn này tiếp xúc với AC và BD.

 

$\boxed{\text{Bài toán 390}}$

Cho dãy số $(a_n)$ thỏa $\mathop {\lim }\limits_{n \to + \infty } \sum\limits_{k = 0}^n {{a_k} = a \in \mathbb{R}} $. Chứng minh \[\mathop {\lim }\limits_{n \to + \infty } \sum\limits_{k = 0}^n {{a_k}\cos \frac{{k\pi }}{n} = a} \]

 

$\boxed{\text{Bài toán 391}}$

Trong một hộp có 10 tấm thẻ được đánh số 0,1,2,..,9. Lấy ngẫu nhiên bốn thẻ và xếp cạnh nhau theo thứ tự từ trái sang phải. Hỏi có bao nhiêu cách xếp để bốn thẻ xếp thành một số tự nhiên chẵn. 

 

$\boxed{\text{Bài toán 392}}$

Chứng minh PT sau có ít nhất một nghiệm:

$$ \sqrt{5+4\sqrt{9-2\sqrt{x}}}=2\sqrt{13}(13-x)$$

 

$\boxed{\text{Bài toán 393}}$

Một "bàn cờ" kích thước $1\times (m+n)$ ô. Có $n$ quân tốt đứng ở $n$ ô đầu tiên của bàn cờ. Cần phải tịnh tiến $n$ quân tốt đến $n$ ô cuối cùng (mỗi quân tiến $m$ bước). Mỗi bước đi chỉ được phép di chuyển 1 quân tốt bất kỳ tiến 1 ô về phía cuối bàn cờ nhưng không được "dẫm đạp" lên quân tốt khác. Gọi $S(n,m)$ là số cách di chuyển $n$ quân tốt tịnh tiến $m$ bước.

Chứng minh rằng: $$S(n,m)=\frac{1!2!...(n-1)!}{m!(m+1)!...(m+n-1)!}\times(mn)!$$

 

Ví dụ: $S(2,3)=\dfrac{1!}{3!4!}\times (2.3)!=5$

 

$\boxed{\text{Bài toán 394}}$

Cho $a,b >0$ thỏa mãn $a+b=2$ và $n \in \mathbb{N}$ Chứng minh:

$$(ab)^{\frac{n(n+1)}{2}}.(a^n+b^n)\le 2$$

 

$\boxed{\text{Bài toán 394}}$

-Lấy $Q[\sqrt{5}]$ là tập các số biểu diễn được dưới dạng: $x+y\sqrt{5}$ ( Với $x,y$ là các số hữu tỉ )
-Định 2 số $u,v\in Q[\sqrt{5}]$ sao cho: $u^4+v^4=2+\sqrt{5}$

 

$\boxed{\text{Bài toán 395}}$

Tìm tất cả các hàm thỏa $f:\mathbb{R}\to \mathbb{R}$

$$f\left( x+\cos \left( ny \right) \right)=f\left( x \right)+n\cos \left( f\left( y \right) \right)$$
Với $n\in {{\mathbb{N}}^{*}}$

 

$\boxed{\text{Bài toán 396}}$

Cho dãy Fibonaci $F_n$
đặt $P(x)=\left\{(m,n)|1 \leq m \leq n \leq x, (F_m,F_n)=1 \right \}$
Tính $\lim_{x \to \infty} \frac{P(x)}{x^2}$

 

$\boxed{\text{Bài toán 397}}$

Chứng minh dãy số sau đây có giới hạn và tìm giới hạn đó:

$\left\{ \begin{array}{l} u_0 = 2011 \\ u_n = \dfrac{1}{2}\left( {u_{n - 1} + \dfrac{{216}}{{u_{n - 1}^2 }}} \right),\forall n \ge 1 \\ \end{array} \right.$


Trong chủ đề: [Archive] Cập nhật list Những bài toán trong tuần (301-400)

10-10-2016 - 21:59

$\boxed{\text{Bài toán 377}}$

Gỉa sử rằng trên mặt phẳng toạ độ cho đường cong là đồ thị của hàm số đa thức: $P(x)=x^{4}+px^{3}+qx^{2}+rx+s,P\in \mathbb{R}[x]$.

Một đường thẳng trên mặt phẳng ấy gọi là nằm ngang nếu nó song song với trục hoành và cắt đường cong tại 4 điểm A, B, C, D (tính từ trái sang phải).Ngoài ra nếu độ dài các đoạn thẳng AB, AC, AD có thể lấy làm độ dài các cạnh của một tam giác nào đó, thì đường thẳng như vậy còn được gọi là "đường tam giác". Chứng minh rằng chỉ có thể xảy ra trường hợp hoặc tất cả các đường thẳng nằm ngang là "đường tam giác", hoặc tất cả các đường thẳng ấy ko là "đường tam giác".

 

$\boxed{\text{Bài toán 378}}$

Cho tam giác $ABC$,$P$ là một điểm trong tam giác.Gọi $E,F$ là giao điểm  của $PB,PC$ với $AC,AB$.Đường thẳng $AP$ cắt $(ABC)$ tại $D$,gọi $L$ là giao điểm của $EF$ và $BC$.Chứng minh rằng khi $P$ thay đổi,$DL$ luôn đi qua một điểm cố định.

 

$\boxed{\text{Bài toán 379}}$

Cho các số nguyên dương a,b,c thoả mãn $a^{2}+ab+b^{2}$ là ước của $a^{3}+b^{3}$ và $a-b$ là số nguyên tố. Chứng minh: $a^{3}-b^{3}$ là luỹ thừa bậc bốn của 1 số nguyên.

 

$\boxed{\text{Bài toán 380}}$

Tìm tất cả các hàm $f$ xác định trên tập các số thực và nhận giá trị thỏa mãn $5$ điều kiện sau đây:

$(1) f(1)=1;$

$(2)f(-1)=-1;$

$(3)f(x)\leq f(0)$ với $0<x<1;$

$(4)f(x+y)\geq f(x)+f(y)$ với mọi $x,y$

$(5)f(x+y)\leq f(x)+f(y)+1$ với mọi $x,y$

 

$\boxed{\text{Bài toán 381}}$

 

Cho $n \in \mathbb{N^*}$.Chứng minh rằng:

$$n!<n^{n+\dfrac{1}{2}}.e^{1-n}$$

 

$\boxed{\text{Bài toán 382}}$

Một điểm được gọi là nguyên trên mặt phẳng tọa độ Oxy nếu cả hoành độ và tung độ nó đều là những số nguyên
Xét phát biểu : Một điểm nguyên $A$ được gọi là có thể nhìn thấy từ gốc tọa độ $O$ khi và chỉ khi trên đoạn $OA$ không chứa bất kì 1 điểm nguyên nào khác 
Chứng minh rằng . Với $n \in N^*$ thì ta có thể dựng được 1 hình vuông có kích thước $n*n$ sao cho các điểm nguyên trên biên và cả trong hình vuông đều không thể nào nhìn thấy từ gốc tọa độ $O$

 

$\boxed{\text{Bài toán 383}}$

 

Cho $k$ là số nguyên dương chẵn. $N$ là tích của $k$ số nguyên tố phân biệt $p_1,...,p_k$.  $a,b$ là hai số nguyên dương phân biệt sao cho $a \leq b \leq N$. Gọi $S_1$ và $S_2$ là hai tập thỏa mãn:$ S_1=\{d| $ $ d|N, a\leq d\leq b, d $ có số ước nguyên tố chẵn $\}$, $ S_2=\{d| $ $ d|N, a\leq d\leq b, d $ có số ước nguyên tố lẻ $\}$. Chứng minh rằng: $\left | S_1 \right |-\left | S_2 \right |\leq C_{k}^{\frac{k}{2}}$

 

$\boxed{\text{Bài toán 384}}$

 

Xét dãy $P_{k}=\sum\limits_{i=1}^{\infty}\dfrac{i^{k}}{i+1};k \in \mathbb{N^*}$.Chứng minh rằng:
$$P_{k}^2 \le P_{k+1}P_{k-1}$$

 

$\boxed{\text{Bài toán 385}}$

Cho dãy số thực vô hạn $ \{ a_n \}_{n \geq 1 }$ thỏa mãn :
Dãy số $ a_1 + 2a_2 ; a_2 + 2a_3 ; .....; a_n + 2a_{n+1} ;....$ là dãy hội tụ
Chứng minh rằng dãy $ \{ a_n \}_{n \geq 1 }$ cũng hội tụ


Trong chủ đề: Thăm dò ý kiến về việc thi trắc nghiệm môn toán

09-09-2016 - 12:27

:)) Sắp tới chắc thầy cô kéo nhau mở lớp dạy thêm toán Casio.


Trong chủ đề: Tìm số nghiệm nguyên của hệ phương trình:

28-08-2016 - 10:22

Tìm số nghiệm nguyên của hệ phương trình: 

$$\left\{ \begin{array}{l}{x_1} + {x_2} + {x_3} + {x_4} + {x_5} = 25\\1 \le {x_i} \le 6,i \in \left\{ {1,2,3,4,5} \right\}\end{array} \right.$$

Spoiler

 

Đặt $y_i=x_i-1;\forall i=\overline{1,5}$. Từ giả thiết suy ra $0\le y_i\le 5$
Ta có hệ
$$(I) \; \left\{\begin{matrix}y_1+y_2+...+y_5=20\;\;\;\; (1)\\ 0\le y_i\le 5\; ; \forall i=\overline{1,5}\end{matrix}\right.$$
 
Gọi |X| là tập các nghiệm nguyên không âm của phương trình (1) ta có $|X|=C_{24}^4$.
Gọi $|A|,|B|,|C|,|D|,|E|$ lần lượt là tập tất cả các nghiệm của 5 hệ
$$\left\{\begin{matrix}y_1+y_2+...+y_5=20\\ y_i\ge 6\; ;\forall i\in \{1,2,3,4,5\}\end{matrix}\right.$$
Bằng cách đặt $k_i=y_i-6$ và áp dụng bài toán chia kẹo Euler ta dễ dàng tính được 
$|A|=|B|=|C|=|D|=|E|=0$ (phương trình này vô nghiệm :)) thấy lạ lạ ...)
 
$$|A\cap B| = |A\cap C| = |A\cap D| = |A\cap E| = |B\cap C| = |B\cap D| = |B\cap E| = |C\cap D| = |C\cap E| = |D\cap E| =0$$
$$|A\cap B\cap C| = |A\cap B\cap  D| = |A\cap B \cap E| = |A\cap C\cap D| = |A\cap C\cap E| = |A\cap D\cap E| = |B\cap C\cap D| =0$$
$|B\cap C\cap E| + |B\cap D\cap E| + |C\cap D\cap E| =0$
$$|A\cap B\cap C\cap D| = |A\cap B\cap C\cap E| = |A\cap B\cap D\cap E| = |A\cap C\cap D\cap E| = |B\cap C\cap D\cap E| =0$$
$$ |A\cap B\cap C\cap D\cap E| =0$$
 
Theo nguyên lý bù trừ ta có số nghiệm hệ (I) là
$$X-(|A| + |B| + |C| + |D| + |E| - |A\cap B| - |A\cap C| - |A\cap D| - |A\cap E| - |B\cap C| - |B\cap D| - |B\cap E| - |C\cap D| - |C\cap E| - |D\cap E| + |A\cap B\cap C| + |A\cap B\cap D| + |A\cap B\cap E| + |A\cap C\cap D| + |A\cap C\cap E| + |A\cap D\cap E| + |B\cap C\cap D| + |B\cap C\cap E| + |B\cap D\cap E| + |C\cap D\cap E| - |A\cap B\cap C\cap D| - |A\cap B\cap C\cap E| - |A\cap B\cap D\cap E| - |A\cap C\cap D\cap E| - |B\cap C\cap D\cap E| + |A\cap B\cap C\cap D\cap E| )$$
$$=C_{24}^4=10626. \;\; \blacksquare$$