Đến nội dung


Zaraki

Đăng ký: 07-03-2011
Offline Đăng nhập: Riêng tư
****-

Chủ đề của tôi gửi

Tuần 3 tháng 9/2017: Chứng minh rằng $\angle RHC=\angle PHB$.

17-09-2017 - 20:25

Như vậy lời giải cho hai bài Tuần 2 tháng 9/2017 đã được đưa tại đây kèm theo đó là hai bài toán mới của thầy Trần Quang Hùng và thầy Nguyễn Minh Hà. Xin được trích dẫn lại hai bài toán:

 

Bài 1. Cho tam giác $ABC$ nhọn với $AB<AC$ có tâm nội tiếp $I$ và phân giác $AD$. $H$ là trực tâm tam giác $ABC$. $P$ đối xứng $A$ qua $BC$. Trên $AP$ lấy $Q$ sao cho $\angle PQI= \angle ADB$. $K,L$ là tâm bàng tiếp gód $B,C$ của tam giác $ABC$. $M,N$ thuộc $BC$ sao cho $KN,LM$ cùng vuông góc với $QI$. $R$ là tâm ngoại tiếp tam giác $PMN$. Chứng minh rằng $\angle RHC=\angle PHB$.

 

File gửi kèm  Screen Shot 2017-09-17 at 11.24.32 PM.png   112.67K   2 Số lần tải

 

Bài 2. Cho tứ giác $ABCD$. Các cạnh đối $AB$ và $CD$ cắt nhau tại $E$ còn $AD$ và $BC$ cắt nhau tại $F$. $M,N$ là hai điểm thuộc $EF$ và đối xứng với nhau qua trung điểm của $EF$. $S$ là giao điểm của $AM$ và $CN$. $P,Q$ theo thứ tự là giao điểm của $SB,SD$ và $EF$. Chứng minh rằng hai điểm $P,Q$ đối xứng với nhau qua trung điểm của $EF$.

 

File gửi kèm  Screen Shot 2017-09-17 at 11.24.41 PM.png   168.07K   2 Số lần tải


Tuần 1 tháng 9/2017: đường tròn ngoại tiếp tam giác $SEF$ tiếp xúc $(O)...

03-09-2017 - 20:23

Như vậy lời giải cho hai bài Tuần 5, tháng 8, 2017 đã được đưa tại đây kèm theo đó là hai bài toán mới của thầy Trần Quang Hùng và anh Nguyễn Tiến Dũng. Xin được trích dẫn lại hai bài toán:

 

Bài 1. Cho tam giác $ABC$ nhọn nội tiếp trong đường tròn $(O)$. $M$ là trung điểm $BC$. Tiếp tuyến qua $B,C$ của $(O)$ cắt nhau tại $T$. Trên $TB,TC$ lấy các điểm $F,E$ sao cho $MF \parallel AB, ME \parallel AC$. $TM$ cắt $EF$ tại $D$. $ME,MF$ lần lượt cắt các đường tròn ngoại tiếp tam giác $TED, TFD$ tại $N,P$ khác $E,F$. $OE,OF$ lần lượt cắt $TN,TP$ tại $Q,R$. $S$ đối xứng $T$ qua $QR$. Chứng minh rằng đường tròn ngoại tiếp tam giác $SEF$ tiếp xúc $(O)$.

 

File gửi kèm  Screen Shot 2017-09-03 at 11.20.08 PM.png   143.68K   4 Số lần tải

 

Bài 2. Cho tam giác $ABC$ có đường tròn nội tiếp $(I)$. Tiếp tuyến của $(I)$ song song với $BC$ tiếp xúc $(I)$ tại $D$> Lấy các điểm $E,F$ trên $IA$ sao cho $DE \parallel IC$ và $DF \parallel IB$. Chứng minh rằng đường thẳng nối trung điểm các đoạn thẳng $BE,CF$ đi qua $I$.

 

File gửi kèm  Screen Shot 2017-09-03 at 11.21.44 PM.png   56.95K   4 Số lần tải


Tuần 4 tháng 8/2017: Chứng minh rằng $ST$ đi qua $H$.

21-08-2017 - 04:41

Như vậy lời giải cho hai bài Tuần 3 tháng 8/2017 đã được đưa tại đây kèm theo đó là hai bài toán mới của thầy Trần Quang Hùng và anh Trần Quang Huy. Xin được trích dẫn lại hai bài toán:

 

Bài 1. Cho tam giác $ABC$ nhọn với đường cao $AD,BE,CF$ đồng quy tại trực tâm $H$. $K,L$ lần lượt là tâm nội tiếp các tam giác $DBF, DCE$. $DK,DL$ lần lượt cắt $AB,AC$ tại $N,M$. $BM,CN$ cắt $KL$ lần lượt tại $P,Q$. Các điểm $S,T$ lần lượt nằm trên $AB,AC$ sao cho $KS \parallel DE, LT \parallel DP$. Chứng minh rằng $ST$ đi qua $H$.

 

File gửi kèm  Figure5808.png   6.29K   5 Số lần tải

 

Bài 2. Cho $\triangle ABC$ có trực tâm $H$. Đường tròn nội tiếp $(I)$ của $\triangle ABC$ tiếp xúc với $BC,CA$ tại $D,E,F$. Đường cao đỉnh $D$ của $\triangle DEF$ cắt đường cao $AH$ của $\triangle ABC$ tại điểm $M$. Chứng minh rằng đường tròn $(H,HM)$ đi qua trực tâm $K,L$ của các tam giác $\triangle DME$ và $\triangle DMF$.

 

File gửi kèm  Screen Shot 2017-08-21 at 7.39.54 AM.png   71.34K   5 Số lần tải


Tuần 2 tháng 8/2017: đường tròn $(D,DP)$ tiếp xúc với đường tròn $(AEF)...

06-08-2017 - 19:03

Như vậy lời giải cho hai bài Tuần 1 tháng 8/2017 đã được đưa tại đây kèm theo đó là hai bài toán mới của thầy Trần Quang Hùng và anh Nguyễn Tiến Dũng. Xin được trích dẫn lại hai bài toán:

 

Bài 1. Cho tam giác $ABC$ có tâm ngoại tiếp $(O)$. $P,Q$ là hai điểm thuộc cạnh $BC$ sao cho $BP=QC$. $AQ$ cắt trung trực $BC$ tại $R$. $H$ là hình chiếu của $Q$ lên $RP$. $K$ là tâm ngoại tiếp tam giác $PQR$. $L$ đối xứng với $A$ qua $OH$. $D$ nằm trên cạnh $BC$ sao cho $DL \perp PK$. Đường thẳng qua $P$ song song $OA$ cắt $CA,AB$ tại $E,F$. Chứng minh rằng đường tròn $(D,DP)$ tiếp xúc với đường tròn $(AEF)$.

 

File gửi kèm  Figure5752.png   177.58K   5 Số lần tải

 

Bài 2. Cho tam giác $ABC$ cân tại $A$ có tâm nội tiếp $I$. $D$ và $E$ lần lượt là các điểm trên các cạnh $AB$ và $BC$ sao cho $DB+BE=BC$. Lấy $F$ đối xứng với $E$ qua $I$. $H$ là hình chiếu của $D$ trên đường thẳng $IB$. Chứng minh $\angle CHF=90^{\circ}$.

 

File gửi kèm  Screen Shot 2017-08-06 at 10.01.28 PM.png   41.78K   4 Số lần tải


Tuần 4 tháng 7/2017: $KA$ và $LB$ cắt nhau trên trục đẳng phương củ...

24-07-2017 - 04:39

Như vậy lời giải cho hai bài Tuần 3 tháng 7/2017 đã được đưa tại đây kèm theo đó là hai bài toán mới của thầy Trần Quang Hùng và thầy Nguyễn Minh Hà. Xin được trích dẫn lại hai bài toán:

 

Bài 1. Đường tròn $(I)$ và $(J)$ ở ngoài nhau có hai dây cung bằng nhau là $RM$ và $NT$ sao cho $R,M,N,T$ thẳng hàng. Tiếp tuyến $R$ của $(I)$ cắt $(J)$ tại $A,B$. Tiếp tuyến qua $T$ của $(J)$ cắt $(I)$ tại $K,L$ như hình vẽ. Chứng minh rằng $KA$ và $LB$ cắt nhau trên trục đẳng phương của $(I)$ và $(J)$.

 

File gửi kèm  Screen Shot 2017-07-24 at 7.34.44 AM.png   227.27K   5 Số lần tải

 

Bài 2. Cho tam giác $ABC$, $(O)$ là đường tròn ngoại tiếp, $Y,Z$ theo thứ tự là trung điểm của $CA,AB$. $P$ là điểm bất kì không thuộc $(O)$. $T$ là giao điểm thứ hai của $AP$ và $(O)$. $E,F$ theo thứ tự là giao điểm thứ hai của các đường tròn $(APY),(APZ)$ và $(O)$. $S$ là giao điểm thứ hai của các đường tròn $(OBE), (OCF)$. Chứng minh rằng $O,A,T,S$ cùng thuộc một đường tròn.

 

File gửi kèm  Screen Shot 2017-07-24 at 7.38.47 AM.png   102.63K   5 Số lần tải