Đến nội dung


Chú ý

Diễn đàn vừa được bảo trì và nâng cấp nên có thể sẽ hoạt động không ổn định. Các bạn vui lòng thông báo lỗi cho BQT tại chủ đề này.


Zaraki

Đăng ký: 07-03-2011
Offline Đăng nhập: Riêng tư
****-

Chủ đề của tôi gửi

Tuần 3 tháng 2/2017: Chứng minh tứ giác $AKNL$ ngoại tiếp

19-02-2017 - 18:50

Như vậy lời giải cho bài Tuần 2 tháng 2/2017 đã được thầy Hùng đưa ra tại đây kèm theo đó là bài toán mới. Xin trích dẫn lại bài toán mới:

 

Cho tam giác $ABC$ nội tiếp trong đường tròn $(O)$. Đường tròn bàng tiếp góc $A$ là $(J)$ tiếp xúc $BC,CA,AB$ lần lượt tại $D,E,F$. $M$ là trung điểm $EF$. $DM$ cắt $(J)$ tại $N$ khác $D$. Trên đoạn $AE,AF$ lần lượt lấy các điểm $K,L$ sao cho $NK,NL$ tiếp xúc $(O)$. Chứng minh rằng tứ giác $AKNL$ ngoại tiếp.

 

File gửi kèm  Screen Shot 2017-02-19 at 9.49.52 PM.png   73.37K   1 Số lần tải


Tuần 2 tháng 2/2017: Chứng minh tam giác $NUV$ cân.

13-02-2017 - 02:27

Như vậy là lời giải cho bài Tuần 1 tháng 2 năm 2017 đã được thầy Hùng cho lời giải tại đây kèm theo đó là bài toán mới. Xin trích dẫn lại bài toán mới:

 

Cho tam giác $ABC$ nội tiếp đường tròn $(O)$ và phân giác $AD$. $K,L$ là tâm ngoại tiếp tam giác $ADB,ADC$. Tiếp tuyến qua $A$ của $(O)$ cắt $BC$ tại $T$. $AK,AL$ cắt $OT$ tại $P,Q$. $E,F$ là hình chiếu của $Q,P$ lên $CA,AB$. $M,N$ là trung điểm của $BC,AM$. $NE,NF$ cắt $BC$ tại $U,V$. Chứng minh rằng tam giác $NUV$ cân.

 

File gửi kèm  Screen Shot 2017-02-13 at 5.26.55 AM.png   74.98K   2 Số lần tải


Tuần 1 tháng 2/2017: $QR$ đi qua điểm cố định khi $P$ di chuyển

05-02-2017 - 23:28

Như vậy lời giải bài toán Tuần 5 tháng 1/2017 đã được thầy Hùng đưa tại đây kèm theo đó là bài toán mới. Xin trích dẫn lại bài toán mới:

 

Cho tam giác $ABC$ nội tiếp trong đường tròn $(O)$. $P$ là điểm di chuyển trên cung $BC$ không chứa $A$. Các điểm $E,F$ lần lượt thuộc $CA,AB$ sao cho $PB \perp BE$ và $PC \perp CF$. $EF$ cắt $BC$ tại $Q$. $R$ thuộc đoạn $AP$ sao cho $\angle RBP =\angle  RCP$. Chứng minh rằng đường thẳng $QR$ luôn đi qua một điểm cố định khi $P$ di chuyển.


Tuần 5 tháng 1/2017: $AR$ và trung trực $MN$ cắt nhau trên $(I...

30-01-2017 - 03:58

Như vậy bài toán cho Tuần 4 tháng 1 năm 2017 đã được thầy Hùng cho lời giải tại đây kèm theo đó là bài toán mới. Xin trích dẫn lại bài toán mới.

 

Cho tam giác $ABC$ có đường tròn nội tiếp $(I)$ tiếp xúc $BC,CA,AB$ tại $D,E,F$. $BP,CQ$ là các phân giác trong. Đoạn $AI$ cắt $(I)$ tại $J$. Đường thẳng qua $A$ song song với $JE,JF$ lần lượt cắt $DE,DF$ tại $M,N$. $ID$ cắt $PQ$ tại $R$. Chứng minh rằng $AR$ và trung trực $MN$ cắt nhau trên $(I)$.


[PI của bạn] $a,b,c,d$ nguyên dương thoả $a^2+1=bc, c^2+1=da$. Tìm...

26-01-2017 - 13:18

Bài toán sau là đề ra kì này của tạp chi PI của bạn tháng 11/2016 và đã được đưa giải trong số đầu của tạp chí PI. Tác giả bài toán là thầy Võ Quốc Bá Cẩn. Mình post bài này để các bạn thảo luận cùng tìm các cách khác nhau để giải. 

 

P3. (Võ Quốc Bá Cẩn) Cho các số nguyên dương $a,b,c,d$ thoả mãn điều kiện $a^2+1=bc, c^2+1=da$. 

a) Chứng minh rằng $P= \frac{a+d}{c}+ \frac{b+c}{a}$ là một số nguyên.

b) Tìm tất cả các giác trị có thể của $P$.