Đến nội dung


Chú ý

Nếu các bạn đăng kí thành viên mà không nhận được email kích hoạt thì hãy kiểm tra thùng thư rác (spam). Nếu không biết cách truy cập vào thùng thư rác thì các bạn chịu khó Google hoặc đăng câu hỏi vào mục Hướng dẫn - Trợ giúp để thành viên khác có thể hỗ trợ.


Bui Quang Dong

Đăng ký: 21-04-2011
Offline Đăng nhập: 30-07-2011 - 16:01
*----

Bài viết của tôi gửi

Trong chủ đề: Đề thi tuyển sinh vào 10 toán Năng khiếu Hà Tĩnh 2011-2012

26-06-2011 - 21:35

Post đầy đủ đề đi bạn.nhìn thiếu thấy khó chịu quá

Trong chủ đề: Xin ít kinh nghiệm

17-06-2011 - 12:40

Hix.
Các Pro vào giúp đi
sang năm học hóa Hữu cơ chết mất.

Trong chủ đề: Cùng chia sẻ BĐT

17-06-2011 - 12:30

Bdt bunhia mở rộng
còn gọi là bdt Holder
trong chương trình thcs ta có thể biết đến dạng đơn giản như sau
cho 3 bộ số dương
$ (X,Y,Z),(A,BC),(M,N,P) $
thì
$(X^3+Y^3+Z^3)(A^3+B^3+C^3)(M^3+N^3+P^3) \ge (XAM+YBN+ZCP)^3 $

Cm
bdt <=>
$ \dfrac{XAM+YBN+CZP}{ \sqrt[3]{(X^3+Y^3+Z^3)(A^3+B^3+C^3)(M^3+N^3+P^3)}} \le 1 $
Áp dụng bdt Cauchy
ta có
$ \dfrac{XAM}{\sqrt[3]{(X^3+Y^3+Z^3)(A^3+B^3+C^3)(M^3+N^3+P^3)}} \le \dfrac{1}{3}.(\dfrac{X^3}{X^3+Y^3+Z^3} + \dfrac{A^3}{A^3+B^3+C^3} + \dfrac{M^3}{M^3+N^3+P^3}) $
làm tương tự rồi cộng lại ta có dpcm
bdt Holder thường dùng khi
$A=B=C=M=N=P=1 $
$9(x^3+y^3+z^3) \ge (x+y+z)^3 $

Trong chủ đề: Tìm giới hạn

17-06-2011 - 00:43

Cho$(U_{n})$ xác định bởi $ U_{1}=1$,$U_{n+1}=\dfrac{1}{2}(U_{n}+\dfrac{3}{U_n^2})$,$(n\geq1)$.CMR Dãy có giới hạn hữu hạn. Tìm giới hạn đó



haha.bài này khi sáng thầy mới ra về nhà làm.
Ta sẽ cm $\lim{u_n} = \sqrt[3]{3} $
thật vậy
$|u_{n+1} - \sqrt[3]{3}|=|\dfrac{1}{2}.(u_n+\dfrac{3}{{u_n}^2}) - \sqrt[3]{3}|$
$ =|u_n - \sqrt[3]{3}|.|\dfrac{1}{2} - \dfrac{\sqrt[3]{3}}{2u_n} - \dfrac{\sqrt[3]{9}}{2{u_n}^2}|$

$ < \dfrac{1}{2}.|u_n-\sqrt[3]{3}| < (\dfrac{1}{2})^n. | u_1 - \sqrt[3]{3} | \to 0 $
$\Rightarrow \lim(u_n-\sqrt[3]{3}) = 0 \Rightarrow \lim{u_n}=\sqrt[3]{3} $

Mod:Không post 2 bài có nội dung giống nhau.Bài viết trên của bạn sẽ bị xóa.

Trong chủ đề: CM vuông góc và tỉ số

17-06-2011 - 00:23

Cho tam giác nhọn ABC nội tiếp ( O:R) có góc C =45độ. đường tròn đương kính AB cắt AC & BC theo thứ tự là M & N.
a/ c,m MN :P OC
b/ MN = AB/căn2 pro nào giải chi tiết jum` nha thanks


kẻ tiếp tuyến Cx tại C của đường tròn (O)
(tia Cx thuộc nửa mphẳng bờ AC không chứa B
ta có $\widehat{ACx}=\widehat{ABC}=\widehat{NMC} $
$\Rightarrow Cx \parallel MN$
Do $ Cx \perp OC \Rightarrow MN \perp OC $
b, ABNM ntiep $\Rightarrow \vartriangle CMN \sim \vartriangle CBA$
$\Rightarrow \dfrac{MN}{AB}=\dfrac{BN}{AC} = \sin{ACB} = \sin{45} =\dfrac{1}{\sqrt{2}}$
$\Rightarrow AB=MN\sqrt{2} \Rightarrow Q.E.D$