Đến nội dung


Chú ý

Nếu các bạn đăng kí thành viên mà không nhận được email kích hoạt thì hãy kiểm tra thùng thư rác (spam). Nếu không biết cách truy cập vào thùng thư rác thì các bạn chịu khó Google hoặc đăng câu hỏi vào mục Hướng dẫn - Trợ giúp để thành viên khác có thể hỗ trợ.


Dieu Ha

Đăng ký: 25-07-2011
Offline Đăng nhập: 12-08-2012 - 21:37
-----

Bài viết của tôi gửi

Trong chủ đề: Một vài bài toán giải phương trình!

02-09-2011 - 08:27

Đã ai làm được câu g chưa ah?
Đề có chút sai sót, mng thông cảm
Đề hoàn chỉnh đây ạ:
g) $\sqrt {x - 1} + x - 3 = \sqrt {4{\rm{x}}^2 - 10{\rm{x}} + 16} $

Trong chủ đề: Một vài bài toán giải phương trình!

31-08-2011 - 20:42

Cảm ơn các bạn nhé!

Trong chủ đề: CM 2 góc bằng nhau

03-08-2011 - 21:23

Hình đã gửi
Vẽ $AK \bot AB(K \in BC)$
$ = > \widehat{K{\rm{A}}H} = 90^0 $
$= > \widehat{K{\rm{A}}C} + \widehat{CAH} = 90^0 $
Mà $\widehat{ACB} - \widehat{B} = 90^0 = > \widehat{K{\rm{A}}C} + \widehat{K{\rm{A}}B} - \widehat{B} = 90^0 = > \widehat{K{\rm{A}}C} + 90^0 - \widehat{B} = 90^0 = > \widehat{K{\rm{A}}C} = \widehat{B}$
Mặt khác $\widehat{K{\rm{A}}C} + \widehat{CAH} = \widehat{K{\rm{AH}}}{\rm{ = 90}}^0 = > \widehat{B} + \widehat{CAH} = 90^0$
Mà $\widehat{B} + \widehat{BCH} = 90^0 = > \widehat{CAH} = \widehat{BCH}$ (đpcm)

Ps: Hình hơi nhỏ, bạn thông cảm ;))

Trong chủ đề: Giải phương trình khó!

02-08-2011 - 19:09

$x \ge 1$
Trường hợp $x=2$ là lời giải.
Nếu $1 \le x < 2$ thì $\sqrt[3]{{x+6}}+\sqrt{x-1}> x^{2}-1$
Nếu $x>2$ thì $\sqrt[3]{{x+6}}+\sqrt{x-1}< x^{2}-1$


Giải thích rõ hơn các bất đẳng thức xảy ra trong bài đc ko?, em chưa rõ.
Cảm ơn vì đã giúp đỡ! ;))

Trong chủ đề: Một bài toán khó!

02-08-2011 - 19:02

Đề bài : Cho a,b,c thỏa mãn:
$\dfrac{b^2 + c^2 - a^2 }{2bc} + \dfrac{c^2 + a^2 - b^2 }{2ac} + \dfrac{a^2 + b^2 - c^2 }{2ab} = 1$
Giải :
$\dfrac{b^2 + c^2 - a^2 }{2bc} + \dfrac{c^2 + a^2 - b^2 }{2ac} + \dfrac{a^2 + b^2 - c^2 }{2ab} = 1$

$ \Leftrightarrow (\dfrac{c^2 + a^2 - b^2 }{2ac} - 1) + (\dfrac{a^2 + b^2 - c^2 }{2ab} - 1) + (\dfrac{b^2 + c^2 - a^2 }{2bc} + 1) = 0$

$ \Leftrightarrow \dfrac{c^2 + a^2 - b^2 - 2ac }{2ac} + \dfrac{a^2 + b^2 - c^2 - 2ab}{2ab} + \dfrac{b^2 + c^2 - a^2 + 2bc}{2bc} = 0$

$\Leftrightarrow \dfrac{( a - c )^2 - b^2}{2ac} + \dfrac{( a - b )^2 - c^2}{2ab} + \dfrac{( b + c )^2 - a^2}{2bc} = 0$

$\Rightarrow \dfrac{(a - c - b)(a - c + b)}{2ac}+\dfrac{( a - b - c )(a - b + c)}{2ab} + \dfrac{( b + c - a )( b + c + a )}{2bc } = 0$

$\Leftrightarrow \dfrac{a - b - c}{2}[\dfrac{a - c + b }{ac} + \dfrac{a - b + c}{ab} - \dfrac{a + b + c}{bc}] = 0$

$\Rightarrow (a - b - c)(\dfrac{ab - bc + b^2}{abc} + \dfrac{ac - bc + c^2 }{abc} - \dfrac{a^2 + ab + ac}{abc}) = 0$

$\Leftrightarrow \dfrac{( a - b - c )(ab - bc + b^2 + ac - bc + c^2 - a^2 - ab - ac)}{abc} = 0$

$\Leftrightarrow \dfrac{(a - b - c)(b^2 - 2bc + c^2 - a^2 )}{abc} = 0$

$ \Rightarrow (a - b - c)[( b - c)^2 - a^2] = 0 \Leftrightarrow (a - b - c )( b - c -a )( b - c + a ) = 0$

$ \Rightarrow \left[\begin{array}{l} a = b + c\\a = b - c\\ a = c - b\end{array}\right.$
Với mỗi giá trị a như vậy, thay vào từng biểu thức trên. Ta sẽ có điều phải chứng minh.

P/S: Ai có cách ngắn hơn thì đóng góp nhé !


Thks bạn nhiều nhé! ;))