Đến nội dung


Chú ý

Nếu các bạn đăng kí thành viên mà không nhận được email kích hoạt thì hãy kiểm tra thùng thư rác (spam). Nếu không biết cách truy cập vào thùng thư rác thì các bạn chịu khó Google hoặc đăng câu hỏi vào mục Hướng dẫn - Trợ giúp để thành viên khác có thể hỗ trợ.


Dieu Ha

Đăng ký: 25-07-2011
Offline Đăng nhập: 12-08-2012 - 21:37
-----

Chủ đề của tôi gửi

Giải hệ $\left\{\begin{array}{l}x^{2...

12-08-2012 - 20:45

Giải hệ phương trình $\left\{\begin{array}{l}x^{2}+y^{2}-2x-y=2 \\2x^{2}+xy-y^{2}=1 \end{array}\right.$

Giải hệ $\left\{\begin{array}{l}x^{4...

08-08-2012 - 23:22

Giải hệ $\left\{\begin{array}{l}x^{4}+y^{4}=1 \\x^{5}+y^{5}=1 \end{array}\right.$

Tam giác ABC cân tại A nội tiếp (O). M là trung điểm AC. BM cắt (O) tại Q. C/m BQ...

11-05-2012 - 22:50

1. Tam giác ABC cân tại A nội tiếp (O). M là trung điểm AC. BM cắt (O) tại Q. C/m BQ $\geq$ 2AQ
2. Tam giác ABC vuông tại A. Trên tia AB, AC lấy E, F tương ứng sao cho BE = CF = BC. Chứng minh rằng với mọi M nằm trên đường tròn đường kính BC ta đều có MA + MB + MC $\leq$ EF
3. Tam giác ABC nội tiếp (O;R). Tìm M thuộc cung BC không chứa A sao cho 2011.MB +2012.MC đạt giá trị nhỏ nhất

Chứng minh SK là tiếp tuyến của (O)

31-03-2012 - 19:44

Cho đường tròn (O). Hai đường kính AB và MK không vuông góc với nhau. Trên đường kính AB lấy E,F sao cho OE = OF. Vẽ dây MC đi qua E, dây MD đi qua F. Đường thẳng CD cắt đường thẳng AB tại S.
Chứng minh SK là tiếp tuyến của (O)

$\left\{\begin{array}{l} x^{2}-xy+y^{2}=3(x-y)\\x^{2}+xy...

03-03-2012 - 21:39

Bài 1:
$\left\{\begin{array}{l}x-\frac{1}{x^{3}} = y-\frac{1}{y^{3}}\\ (x - 4y)(y-2x-4) = 36\end{array}\right.$
Bài 2:
$\left\{\begin{array}{l} \sqrt{\frac{2x}{y}}+\sqrt{\frac{2y}{x}} = 3\\ x-y+xy = 3 \end{array}\right.$
Bài 3:
$\left\{\begin{array}{l} (4x^{2}+1)x + (y-3)\sqrt{5-2y}=0 \\ 3x^{2}+4y^{2} = 4\end{array}\right.$
Bài 4:
$\left\{\begin{array}{l} x^{2}=(y+1)(x+1)^{2}\\y = \sqrt{\frac{2x^{2}+1}{x+1}} \end{array}\right.$
Bài 5:
$\left\{\begin{array}{l} x^{2}-xy+y^{2}=3(x-y)\\x^{2}+xy +y^{2}=7(x-y)^{2}\end{array}\right.$
Bài 6:
$\left\{\begin{array}{l}x^{2}y+2x-3y+1=0 \\ 2x^{2}y+y^{2}(x-4) + 2x +y = 0\end{array}\right.$