Đến nội dung


Chú ý

Nếu các bạn đăng kí thành viên mà không nhận được email kích hoạt thì hãy kiểm tra thùng thư rác (spam). Nếu không biết cách truy cập vào thùng thư rác thì các bạn chịu khó Google hoặc đăng câu hỏi vào mục Hướng dẫn - Trợ giúp để thành viên khác có thể hỗ trợ.


ChuDong2008

Đăng ký: 03-10-2011
Offline Đăng nhập: 04-11-2015 - 17:42
-----

Bài viết của tôi gửi

Trong chủ đề: CMR: AO vuông góc với ED

26-05-2014 - 21:36

Gọi I, K thứ tự là các điểm đối xứng của trực tâm H của tam giác ABC qua các cạnh AB, AC.

Có I, K thuộc (O) và DE là đường trung bình của tam giác HIK $\Rightarrow DE//IK$.

Có tứ giác BCDE nội tiếp, suy ra $\measuredangle DBE=\measuredangle DCE$

Xét (O), có $\measuredangle DBE=\measuredangle DCE$, suy ra 2 cung AI; AK bằng nhau.

suy ra OA vuông góc với IK. suy ra OA vuông góc với DE.


Trong chủ đề: Tính các góc của tam giác ABC

19-03-2014 - 21:51

Cho tam giác ABC. Vẽ về phía ngoài tam giác ABC hai tam giác đều ABF và ACE và một tam giác cân BCD có gó BDC bằng $120^0$. Chứng minh DA vuông góc FE.


Trong chủ đề: Tìm số nguyên tố $p$ để $4p+1$ là số chính phương?

22-01-2013 - 21:45

Tìm số nguyên tố $p$ để $4p+1$ là số chính phương?


Có 4p+1 là 1 số chính phương lẻ nên $4p + 1 = 8k+1$ suy ra $p=2k$, p nguyên tố, suy ra p = 2.

Trong chủ đề: Tìm số dư của phép chia $x^{100}$ cho $(x-1)^...

19-10-2012 - 20:12

Đặt $ x - 1 =t $ có $ x = t +1$
Suy ra: $ x^{100} = (t+1)^{100}$
Theo công thức khai triển nhị thúc Newton có:
$ (t+1)^{100} = 1^{100}+ 100.1^{99}.t + 100.99/2. t^2 + ......$ chia $t^2$ dư $1+100t$
vậy chia $x^{100}$ cho $(x-1)^{2}$ dư $100x - 99$

Trong chủ đề: CMR: $\frac{10a}{1+a^{2}} + \frac{10b}{1+b^{2}} +\fr...

10-05-2012 - 13:47

Bài 4 Cho a,b,x,y là những số thực thỏa mãn

$\left\{\begin{matrix} & \frac{x^{4}}{a} +\frac{y^{4}}{b} &=\frac{1}{a+b} \\ & x^{2} +y^{2}&=1 \end{matrix}\right.$

Chứng minh rằng:

$\frac{x^{2012}}{a^{1006}}+\frac{y^{2012}}{y^{1006}}=\frac{2}{(a+b)^{1006}}$

Ta có: $ (x^2+y^2)^2 = 1$ nên $\frac{x^{4}}{a} +\frac{y^{4}}{b} = \frac{x^4+2x^2y^2+y^4}{a+b} $
Chuyển vế và quy đồng, khử mẫu ta được:
$(bx^2-ay^2)^2 = 0$
Suy ra: $ bx^2 = ay^2$ hay $\frac{x^2}{a}=\frac{y^2}{b}=\frac{x^2 +y^2}{a+b}=\frac{1}{a+b}$
Suy ra:
$\frac{x^{2012}}{a^{1006}}=\frac{y^{2012}}{y^{1006}}=\frac{1}{(a+b)^{1006}}$
Suy ra ĐPCM.