Đến nội dung


Chú ý

Nếu các bạn đăng kí thành viên mà không nhận được email kích hoạt thì hãy kiểm tra thùng thư rác (spam). Nếu không biết cách truy cập vào thùng thư rác thì các bạn chịu khó Google hoặc đăng câu hỏi vào mục Hướng dẫn - Trợ giúp để thành viên khác có thể hỗ trợ.


Hình ảnh

MOCK TEST FOR BMO 2017

bmo 2017

  • Please log in to reply
Chủ đề này có 5 trả lời

#1 Mr Cooper

Mr Cooper

    Sĩ quan

  • Thành viên
  • 496 Bài viết
  • Giới tính:Nam
  • Đến từ:Miền cắt trắng
  • Sở thích:$\mathbb{Geometry}$

Đã gửi 22-04-2017 - 15:47

17951749_10212139068848873_6248912053778



#2 Zz Isaac Newton Zz

Zz Isaac Newton Zz

    Sĩ quan

  • Thành viên
  • 395 Bài viết
  • Giới tính:Nam
  • Đến từ:Khoa Toán Tin trường ĐH KHTN TP Hồ Chí Minh
  • Sở thích:Algebraic Topology and Algebraic Geometry

Đã gửi 23-04-2017 - 07:57

Bạn nào làm câu số học bài 1 chưa vậy...

#3 tungthdctrmath

tungthdctrmath

    Lính mới

  • Thành viên
  • 3 Bài viết
  • Giới tính:Nam
  • Đến từ:TPHCM
  • Sở thích:Geometry, Combinatorics, Number Theory, Functions.

Đã gửi 01-05-2017 - 23:05

Bài 1:
- Ta biến đổi như sau:
$$n! \vdots n^3-1 \Leftrightarrow n.(n-2)! \vdots (n^2+n+1).$$
- Khi đó do $ƯCLN(n,n^2+n+1)=1$ nên bài toán tương đương chứng minh có vô hạn $n \in \mathbb{N^*}$ sao cho:

$$(n-2)! \vdots (n^2+n+1)$$
- Xét $n=2^{2^k}, \forall k \geq 3$, ta nhận thấy rằng:

$$n^2+n+1= 2^{2^{k+1}}+2^{2^k}+1=(2^{2^k}-2^{2^{k-1}}+1).(2^{2^k}+2^{2^{k-1}}+1)=$$$$(2^{2^k}-2^{2^{k-1}}+1).(2^{2^{k-1}}-2^{2^{k-2}}+1)\dots(2^2-2+1).(2^2+2+1).$$
Mà $(n-2)!= (2^{2^k}-2)!$ và do $2^{2^j}-2^{2^{j-1}}+1>2^{2^{j-1}}-2^{2^{j-2}}+1, \forall j \geq 3$, $2^{2^2}-2^2+1 > 2^2+2+1>2^2-2+1$, n ta chỉ cần chứng minh với $k \geq 3$ thì bắt đẳng thức sau luôn đúng:
$$2^{2^k}-2^{2^{k-1}}+1 \leq n-2=2^{2^k}-2 \Leftrightarrow 2^{2^{k-1}} \geq 3$$
Dễ thấy với $k \geq 3$ thì luôn đúng, từ đó ta suy ra đpcm.
- P.S.: Hướng của mình chủ yếu dựa vào đẳng thức $a^4+a^2+1=(a^2+a+1)(a^2-a+1)$ mà làm quen nhiều bài nên nhớ tới $a=2^{2^k}$ để tách nhân tử được nhiều lần.

Bài viết đã được chỉnh sửa nội dung bởi tungthdctrmath: 02-05-2017 - 10:58

Keep Moving Forward  :D  :D 


#4 Zz Isaac Newton Zz

Zz Isaac Newton Zz

    Sĩ quan

  • Thành viên
  • 395 Bài viết
  • Giới tính:Nam
  • Đến từ:Khoa Toán Tin trường ĐH KHTN TP Hồ Chí Minh
  • Sở thích:Algebraic Topology and Algebraic Geometry

Đã gửi 02-05-2017 - 08:16

Cách làm của bạn gần giống với cách làm của mình, nhưng cách của mình thì dài dòng hơn. Lúc đầu cứ tưởng là dùng số chính phương mod p ai ngờ là nó mũ 3...

#5 tungthdctrmath

tungthdctrmath

    Lính mới

  • Thành viên
  • 3 Bài viết
  • Giới tính:Nam
  • Đến từ:TPHCM
  • Sở thích:Geometry, Combinatorics, Number Theory, Functions.

Đã gửi 02-05-2017 - 09:26

Cách làm của bạn gần giống với cách làm của mình, nhưng cách của mình thì dài dòng hơn. Lúc đầu cứ tưởng là dùng số chính phương mod p ai ngờ là nó mũ 3...

- Mình lâu rồi chưa đụng tới số chính phương mod p nên cũng chưa suy nghĩ tới :v. Mà có thể cho mình tham khảo cách làm của bạn được không, tại mình thấy nếu thay $2^{2^k}$ thành $3^{2^k}$ thì cách làm cũng y chang, mà mình thì chưa hiểu sao dài hơn chút thôi :v.


Keep Moving Forward  :D  :D 


#6 Zz Isaac Newton Zz

Zz Isaac Newton Zz

    Sĩ quan

  • Thành viên
  • 395 Bài viết
  • Giới tính:Nam
  • Đến từ:Khoa Toán Tin trường ĐH KHTN TP Hồ Chí Minh
  • Sở thích:Algebraic Topology and Algebraic Geometry

Đã gửi 02-05-2017 - 10:20

Cách của mình cũng tương tự của bạn thôi, chỉ là mình lập luận với chứng minh kĩ hơn thôi, mà xét $n=2^{2^{k}}$ hay $n=3^{2^{k}}$ thì cũng tương tự nhau. Mà nếu đề bài là $n^{2}+1$ thì dùng số chính phương $mod$ $p$ là chuẩn luôn, nhưng tiếc là mũ $3$...







Được gắn nhãn với một hoặc nhiều trong số những từ khóa sau: bmo, 2017

5 người đang xem chủ đề

0 thành viên, 5 khách, 0 thành viên ẩn danh